Integrative crash simulation of composite structures

the importance of process induced material data

Stefan Glaser- Andreas Wüst Engineering Plastics Europe - KTE

Content

- Integrative Simulation?
 - Motivation
 - Fiber orientation in filling process
 - Material modelling
 - Influence of fiber orientation tensor
- Simulation applications
 - Simulation of material tests
 - Static loading
 - Crash loading

Short-fiber-reinforced plastic parts under crash loads

The Chemical Company

- Nonlinear material behaviour
- High strain and strain rate
- Failure

Conventional approach for designing mould and part is inadequate

Reason: local anisotropy is not taken into account

→Integrative Simulation

Integrative Simulation for fiber reinforced thermoplastic materials

D BASF The Chemical Company

Process > Material > Part

Motivation for Anisotropic Material Modelling

The Chemical Company

Anisotropy due to fiber orientation longitudinal , mean Secant σ Secant transversal secant tensile long. tensile transv. Stress in Part 8

Engineering Plastics Europe

Parts development: Short-fiber-reinforced thermoplastics

Evolution of Fiber Orientation in Mould Filling Process

The Chemical Company

Due to shearing in the boundary layers the fibers are oriented in flow direction

Evolution of Fiber Orientation in Mould Filling Process

Upper view

Fibers are being oriented in stretching direction

Evolution of Fiber Orientation in Mould Filling Process

Engineering Plastics Europe

Mechanical behaviour of anisotropic layered shells

Flow direction Stiff in tension Flexible in tension Flexible in bending Stiff in bending

Engineering Plastics Europe

Simulation of tensile test on specimen bar

Evolution of fiber orientation

; $\lambda = \frac{(l/d)^2 - 1}{(l/d)^2 + 1}$

Jeffrey 1922

$$\dot{\mathbf{p}} = -\boldsymbol{\omega} \cdot \mathbf{p} + \lambda (\boldsymbol{\gamma} \cdot \mathbf{p} - (\mathbf{p} \cdot \boldsymbol{\gamma} \cdot \mathbf{p})\mathbf{p}) - \frac{D_r}{\Psi} \frac{\partial \Psi}{\partial \mathbf{p}}$$

Orientation distribution function

θ

 $\psi(p)$

Orientation tensors

$$\mathbf{a} = \int_{\omega} \mathbf{p} \otimes \mathbf{p} \psi(\mathbf{p}) \, d\omega$$
$$\mathbf{a}^{4} = \int_{\omega}^{\omega} \mathbf{p} \otimes \mathbf{p} \otimes \mathbf{p} \otimes \mathbf{p} \psi(\mathbf{p}) \, d\omega$$

+...

Taylor expansion of ODF

$$\psi(\mathbf{p}) = \frac{1}{4\pi} + \frac{15}{8\pi} + dev(\mathbf{a}) : dev(\mathbf{p} \otimes \mathbf{p}) + \frac{315}{32\pi} dev(\mathbf{a}^4) :: dev(\mathbf{p} \otimes \mathbf{p} \otimes \mathbf{p} \otimes \mathbf{p})$$

Homogenization of fibers and polymer

(Mori and Tanaka, Tandon and Weng) Mean Field Theory $\sigma_0 = E_0 : \varepsilon_0$ $\sigma = E \epsilon$ $\boldsymbol{\sigma}_1 = \mathbf{E}_1 : \boldsymbol{\varepsilon}_1$ E-Modul Homogenization $\overline{\mathbf{E}} = \begin{bmatrix} c_1 \mathbf{E}_1 : \mathbf{B}^{\varepsilon} + (1 - c_1) \mathbf{E}_0 \end{bmatrix} : \begin{bmatrix} c_1 \mathbf{B}^{\varepsilon} + (1 - c_1) \mathbf{I} \end{bmatrix}^{-1}$ $\mathbf{B}^{\varepsilon} = \left(\mathbf{I} + \boldsymbol{\mathcal{E}}_{(\mathbf{I},\boldsymbol{\omega})} : \left[\mathbf{E}_{\mathbf{0}}^{-1} : \mathbf{E}_{\mathbf{1}} - \mathbf{I}\right]\right)^{-1} \quad \boldsymbol{\mathcal{E}}_{(\mathbf{I},\boldsymbol{\omega})} : \text{Eshelby Tensor}$

BASE

Homogenization of orientation

Material modelling for composite materials

The Chemical Company

Integrative Simulation

Anisotropic stiffness

Anisotropic stiffness for SFRP-material

Engineering Plastics Europe

Tangent modulus for polymers

D BASF The Chemical Company

Tangent modulus for SFRP material

Uniaxial loading longitudinal

Uniaxial loading transversal

Dynamic tensile test, simulation

BASF The Chemical Company

Tensile test at 10 m/s velocity Wave propagation

Simulation

Experiment

Engineering Plastics Europe

Material behaviour at crash loading

Anisotropic, Strain-rate sensitive, Failure

gla

Average Fiber orientation, and Failure variable

Penetration Experiment

Fixed by axisymmetric die

Main fiber direction

Biaxial Stress

Engineering Plastics Europe

Simulation of penetration experiment

Loading

BASF

Main fiber direction

Animation

Simulation of penetration experiment

Beam (LU carrier) under torsional load

Engineering Plastics Europe

Torsional test on LU carrier

The Chemical Company

Degree of fibre orientation in the structure

Tensile load in stiffening ribs

Axial compression on Lu-Carrier

The Chemical Company

Time: 30 sec

Experiment

Simulation

Engineering Plastics Europe

Front view

Back view

Axial Crash on Lu-Carrier

Time 0.02 sec

Experiment

