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Abstract 

 
 A failure criterion, for polymers and soft biological materials subjected to 
very large deformation, is presented in this paper.  The criterion is written in 
terms of the strain invariants in finite elasticity.  Experimental tests for 
determining the failure criterion of a material and some numerical results from 
LS-DYNA are shown. 
 
Introduction 
 
 A failure criterion for composite materials, based on finite elasticity, was 
published by Feng [1].  The failure criterion proved to be simple to use and 
accurate when compared with the experimental data.  In this article, the failure 
criterion has been extended for polymers and soft biological materials.  The 
criterion is written in 2terms of the strain invariants in finite elasticity given by 
Green and Adkins [2].  These invariants are written as functions of the Cauchy 
strains and, in terms, the deformation gradients.  The failure criterion offers a 
relatively simple form.  It can be applied to a wide variety of materials subjected 
to very large deformation.  It contains three failure constants for general three-
dimensional strain states.  These constants can be determined from experimental 
data.  Experimental tests and apparatus for obtaining these constants are 
mentioned in this paper.  The failure criterion is being implemented in LS-DYNA 
now. 
 

Formulation 
 
 A material particle initially at )( αXP , as shown in Figure 1, in the 

undeformed rectangular Cartesian coordinate system αX , is moved to )( ixp , 

in the deformed rectangular Cartesian coordinate system ix .  The indicial 

notation is used throughout the paper.  A neighboring point )( αα XXQ ∆+  in 

the undeformed configuration is moved to )( ii xxq ∆+ .  The unknown function, 

ix , is described by 
 

)( αXxx ii =        
 (1) 
 

For isotropic elastic continuum, there are three invariants of the strain 
tensor.  Choosing the Cauchy strain tensor ( αβC ) as the strain measure, the 

invariants are: 
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The Cauchy strain tensor is defined by 
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 βααβ ,, rr xxC =       (3) 

 

 
 Figure 1. Large deformations of a continuum 

 
The failure surface is based on the energy principle.  When the strain 

energy reaches a maximum, the material fails.  The most general failure criterion 
in terms of the strain invariants is then 
 
 0),,( 321 =IIIF       
 (4) 
 
For incompressible materials, 3I  is one; therefore, the most general failure 
criterion for incompressible materials is 
 

0),( 21 =IIF       
 (5) 
 

If we expand this failure criterion and retain only those terms up to the 
quadratic terms of strain state αβC , the failure criterion for hyperelastic solids is 

 

 α+−+−+−=Φ )3()3()3( 22
2

11111 IFIFIF   
 (6) 
 
Any strain state satisfying 0<Φ  is considered as below the failure state.  A 
stress-free state should be below the failure stress state; thus 0<α  is required.  
Without losing generality, let us say .  The failure surface is described by 
the strain state in which 0=Φ , i.e., 
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 (7) 
 
or 
 

 0)3()3()3( 22
2

111 =Κ−−Γ+−Γ+− III   
 (8) 
 
The strain invariants can also be written in terms of the three principal stretch 
ratios, 1λ , 2λ  and 3λ . 
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There are three material failure constants 1Γ , 2Γ and Κ  in equation (8).  
They are to be determined from test data for each material.  Hence, the minimum 
number of tests required for determining the failure criterion is three. 
 

The failure surfaces for hyperelastic solids, based on this failure criterion, 
are shown in Figure 2.   In the Figure the values of 1Γ , and 2Γ  are 0.0 and 0.02 

respectively.  Three values of Κ = 10, 20 and 30, are shown in the Figure.  
There are two lines.  The homogeneous biaxial stretching state is indicated by 
the line                   

  
Figure 2. Failure surface for polymer 

 
21 λλ = .  The failure surface is symmetric to this line.  The uniaxial stretching is 

shown by the line 12
21 =λλ .  There are three regions bounded by these lines 
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and the failure surface: the tension-tension region (I), the tension-compression 
region (II) and the compression-compression region (III) 
 

Experimental tests for determining 1Γ , 2Γ and Κ  
 
 The tests for determining 1Γ , 2Γ and Κ  can be uniaxial stretching tests, 
biaxial stretching tests with various stretch ratios, inflation of a circular 
membrane, inflation of a circular membrane with rigid inclusion, inflation of a 
rectangular membrane, torsion of a circular cylinder, or any other tests for which 
the strain states are known. 
 
 A polymer is subjected to uniaxial tension or compression test.  The force 
is applied along the 1-axis.  The principal stretch ratio in the 1-axis is 1λ  and the 

principal stretch ratios in the 2- and 3-axes are 2λ  and 3λ , respectively.  The 
principal stretch ratios in the 2-axis and 3-axis are the same   
 
 32 λλ = .       (10) 
 
For incompressible materials, 1321 =λλλ ; therefore, we have 
 

 12
21 =λλ        (11) 

 
The uniaxial tension or compression test will provide one data point on the failure 
surface.  It is the simplest and most common test. 
 
 For homogenous biaxial tension or compression test, the polymer is 
subjected to two forces acting on both 1- and 2-axis. For homogenous 
deformation we have, 
 

 21 λλ =        (12) 
 
The homogenous biaxial tests will yield another data point on the failure surface. 
 
 For another point on the failure surface, one can vary the forces on the 1- 
and 2-axis.  The deformation produces different stretch ratios in the 1-axis and 2-
axis; we have 
 
 21 βλλ =        (13) 
 
The ratio of 1λ  and 2λ  is β . 
 
 These three tests should provide enough data for determining the three 
failure constants. 
 
 The biaxial tests usually will use large specimens to eliminate the edge 
effect. Consequently, the test apparatus is very large. 
 
 Other tests can be used to determine the failure constants also.  For 
example, the inflation of a circular membrane can be used instead of the 
homogenous biaxial tension test.  Due to symmetry, 1λ equals 2λ  at the pole.  
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The value for 1λ  and 2λ  at the pole is a function of the height of the inflated 
membrane, which is a function of the inflating pressure.  The relationship can be 
obtained numerically as shown by Yang and Feng [3].  Later, an approximate 
relationship was obtained by Feng and Christensen [4]. 
 
 The non-homogenous state of stretch ratios as shown in equation (13) 
can also be obtained by the inflation of a circular membrane with a rigid inclusion.   
The ratio β  depends on the radius of the rigid inclusion and the radius of the 
circular membrane. 
 
 Besides these tests, any combination of three different kinds of tests can 
be used to determine the failure constants 1Γ , 2Γ and Κ .  The data are usually 
scattered.  Therefore, statistical methods should be used in data analysis. 

 
An analysis of a test 

 
There are three failure material constants 1Γ , 2Γ and Κ  in equation (8).  

These constants can be determined from test data and numerical minimization  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3. Uniaxial extension test 
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analysis.  Six uniaxial failure data, obtained from uniaxial extension tests shown 
in Figure 3, are 8.3, 8.4, 8.45, 8.5, 8.9, and 9.0.  Six equal biaxial tension failure 
stretching data, obtained from the inflation of a plane circular membrane shown 
in Figure 4, are 5.2, 5.6, 5.75, 5.90, 5.94, and 6.05.  With these experimental 
data and the numerical analysis, the best-fit constants for Κ , 1Γ and 2Γ  are 71, 
0.0 and 0.006 respectively.  The failure surface, as well as the test data, is shown 
in Figure 5.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Inflation of a circular plane membrane 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Test data and the failure surface for a polymer 
The effect of 2Γ  
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The effect of 2Γ  on the failure surface is shown in Figure 6.  The values for 

2Γ  are 0.0, 0.02, 0.1 and 0.5.  The value for Κ  is 25.  It can be seen that 2Γ  is 
more sensitive to the biaxial test data than the uniaxial test data. Therefore, while 
the value for Κ  can be determined relatively accurately by the uniaxial test, the 
value for 2Γ  must be obtained from the biaxial test data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 6. The effect of 2Γ  on the failure surface. 
 

Results from LS-DYNA 
 

The failure criterion has been implemented into LS-DYNA.  The failure 
constants used in the input file are 0.01 =Γ , 02.02 =Γ and 0.1=Κ .  With these 
constants, the failure uniaxial stretch ratio is 1.67 and the failure equal-biaxial 
stretch ratio is 1.355, as shown in Figure 7. The LS-DYNA result, Figure 8, shows 
this phenomenon.   Other results from LS-DYNA are shown in Figure 9.  The 
failure constants used in the input file are 0.01 =Γ , 02.02 =Γ  and K=5.0, 1.0, 
0.75 and 0.5.  The first bar is not subjected to the failure study; therefore, it 
remains intact.  
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In the future, the failure criterion will be implemented into other material 

models as well.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 7.  The failure surfaces for 0.01 =Γ , 02.02 =Γ  and K=1.0, 0.75 and 0.5. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  The results from LS-DYNA; the failure constants are 0.01 =Γ , 

                          02.02 =Γ and 0.1=Κ  
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Figure 9.  The results from LS-DYNA; the failure constants are 0.01 =Γ , 

                         02.02 =Γ , K=5.0, 1.0, 0.75 and 0.5. 
 

Conclusions 
 
 A failure criterion for polymer and soft biological materials, subjected to 
very large deformation, has been presented in this paper.  The failure criterion 
can be applied to small deformation as well as to finite deformation problems.  
There are three failure material constants.  These constants can be determined 
with three kinds of experimental data.  Some simple experimental tests for 
obtaining these constants are mentioned.  The new criterion has been 
implemented into LS-DYNA for numerical simulations and practical applications. 
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