x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS

Thermoplastic composites are being considered for application in vehicle bumper and front-end structures for increased pedestrian protection. This paper describes recent progress in the calibration and validation of LS-DYNATM material model 162 (*MAT_COMPOSITE_DMG_MSC) for the modelling of impact damage in the glass/polypropylene commingled fabric thermoplastic composite, TwintexTM. In this study, MAT 162 is calibrated by using a series of tests that were conducted at quasi-static and dynamic loading rates. These consisted of in-plane tension, shear and compression tests. A novel procedure for calibrating in-plane shear damage is presented. To demonstrate the predictive capabilities of the model, the response of TwintexTM laminates subject to dynamic impact loading is simulated. The force–time histories and damage predictions are successfully compared with corresponding experimental instrumented falling weight test results. It is concluded that MAT 162 provides a versatile tool for predicting damage progression in thermoplastic composites.

application/pdf Brown.pdf — 612.9 KB