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ABSTRACT 
 
Modal methods are long known in linear dynamic analysis for efficient 
computations of the response of structures. The mechanical idea behind is to find 
a particularly useful problem dependent basis (so called eigenfunctions or 
eigenmodes) which can be separated into some of major importance for the 
behavior of the structure and others of minor interest (which can be subsequently 
disregarded).  Unfortunately this concept is basically a completely linear one. 
However, more recent versions of LS-DYNA offer the possibility to superimpose 
shape functions from a previously computed eigenmode basis with a nonlinear 
rigid body motion for parts of the structure. This allows to consider at least some 
of the elastic behavior of a body which would be otherwise considered completely 
rigid. The resulting displacements are then computed with standard explicit 
methods, allowing on one side a substantial reduction of the number of degrees 
of freedom and on the other side parts of the system can be still computed in a 
fully nonlinear manner. The method has been presented in [1]. In the current 
contribution, two different practical applications, a head impact problem and a 
deep drawing simulation are presented and compared to a fully nonlinear 
solution. 
 
 

INTRODUCTION 
 
 

Using modal analysis, the reaction of a structure can be written as a sum of the 
reaction of a set of modes instead of a set of nodes in classical explicit or implicit 
methods. The unknowns are the modal amplitudes instead of nodal 
displacements. Disregarding numerical problems, if a complete set of modes is 
used, the response is computed exactly – though it must be said that in practice 
this is only possible for problems with a fairly small numbers of degrees of 
freedom. To our opinion, the main practical use of the proposed technique is for 
structures with large numbers of degrees of freedom, in which for reasons of 
computational efficiency some parts have to be set rigid. Treating them fully 
deformable thus with a complete FE discretization would increase calculation 
time tremendously. 
 
These “rigid parts” can now be declared as so called deformable rigid bodies. 
This means that deformations of a previously determined eigenmode basis are 
superimposed on the nonlinear rigid body motion. Without having the aim to get 
the “exact” solution too close, this substantially improves the quality of the 
solution in comparison with the rigid body solution, at only moderately higher 
costs. 
 
Of course the superposition principle assumes linearity and thus only problems of 
small strain can be treated. Flexible rigid bodies were implemented in a more 
recent version of LS-DYNA to superimpose shape functions from a previously 
computed eigenbasis on a nonlinear rigid body motion for parts of the structure, 
while treating others as fully nonlinear. 
 
Such a strategy is particularly useful, when fairly large structures, which show a 
strong rigid body motion and/or only little deformation, are contacting structural 
parts which show large deformations. Typical examples are head impact 
simulations, where a head model is impacting deformable parts and metal 
forming simulations, where large very stiff machines respectively machine parts 
are deforming a blank. In [1] such a technique has been used for a large ship 
structure under a mine attack.
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Basic Procedure with LS-DYNA 

 
In the following, we will describe all necessary steps to prepare a LS-DYNA 
keyword file for modal analysis. Our report mainly follows [1], but we only focus 
on eigenmodes – which have a more clear mechanical meaning than the 
constraint and attachment modes also discussed there. We will give only a rough 
description with some additional remarks. For more details we refer to [1]. 
 
The general procedure is as follows: First identify all parts we want to treat in the 
mentioned way as rigid bodies with superimposed modes. For them, the 
eigenvalue problem 
 

( ) 0ΦMK =−  2ω  
is solved to get the n eigenmodes wanted. Their orthogonality property 
 

[ ]2TT    ,  ω== KΦΦIMΦΦ  
is used to reduce the size of the system 
 

f(t)KuuM =+&&  
to 

p(t)zzI =+ ][ 2ω&& . 
 
The fewer eigenmodes are used, the smaller is the reduced size in comparison 
with the original system. We prefer eigenmodes, because they offer a natural 
basis for the equations of motion and due to this the resulting system becomes 
diagonal. It can be treated with any time integration scheme thus also explicit 
time integration. In the case of constraint or attachment modes, however, the 
resulting system is described by densely populated matrices. 
 
After solving the explicit equations, the full system solution is again recovered via 
 

f(t)Φp(t)zΦuΦzu T   ,      ,   === &&&&  
and the resulting deformations are superimposed onto the centre of mass of the 
rigid body.  
 
This last fact has a serious consequence for Dirichlet boundary conditions. Their 
absolute specification in the later described input deck for the eigenvalue 
analysis will turn into a relative one in the local coordinate system of the rigid 
body. Thus all elements with Dirichlet data necessarily must be kept outside the 
rigid body. This inconvenient situation can be solved in practice in two ways: 
 

(i) Exclude all elements with Dirichlet data from the flexible rigid body by 
giving them an own part ID. Then the Dirichlet data from the original 
input deck can be taken into the new analysis one to one. Of course, 
these elements must be excluded from the eigenvalue analysis. 

(ii) If possible, we can add some additional new elements to the 
structure with new part ID and apply then the Dirichlet conditions to 
them. This is to our opinion the more preferable procedure, because 
the same eigenmode data base can be used for several different 
cases of boundary conditions.
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Creation of an input deck 

 
Now we will describe how to prepare an LS-DYNA input deck according to the 
above. For all investigations a double precision version of LS-DYNA must be 
used. First, create sub-models from the original input deck for each flexible rigid 
body. In simple cases this can be done with the help of the SelPar button in LS-
PREPOST. The Output button can be used to write the remaining nodes and 
elements into a new keyword file. All applied loads must then be removed. If we 
have constraints between different parts of our system, we include them in the 
eigenvalue analysis. In [1] it is written, that enough boundary constraints must be 
defined to eliminate rigid body motion. However, we prefer another procedure 
described below and suggest to remove all boundary constraints except the ones 
who shall describe constraints in the local relative coordinate system of the rigid 
body. (The last case is only given for completeness; maybe it has little practical 
meaning.) 
 
The implicit method is then activated by the *CONTROL_IMPLICIT_GENERAL 
keyword. We set imflag=1 and define an arbitrary initial implicit time step size 
dt0>0. The eigenvalue analysis is activated by the 
*CONTROL_IMPLICIT_EIGENVALUE keyword. We must specify the number of 
eigenmodes neigv to be computed. By default, the lowest neigv eigenvalues are 
computed. We suggest to perform a preliminary analysis of approximately 15 or 
20 eigenvalues first. They are written to the d3eigv file. Generally we should 
inspect this file with LS-PREPOST. In the suggested case of no boundary 
constraints, the first six eigenmodes will describe the rigid body motions in 3D. 
Their eigenfrequencies are very close to zero in comparison to the 
eigenfrequency of the seventh mode. The three rotational and three translational 
modes can usually be found rather easily. For big models, this preliminary 
analysis is an additional tool to check the quality of your model. Badly connected 
parts will appear immediately after the sixth basic rigid body. In general it is hard 
or maybe impossible to treat models with low quality in the suggested way. (Note: 
modal analysis is a mechanical and not a numerical method.) 
 
If the created model is suitable to proceed, the first six eigenfrequencies (very 
close to zero, all describing rigid body motion) should be checked and then the 
focus is on the seventh eigenfrequency (clearly nonzero, this is the basic 
eigenmode of the system). Now the second (and final) eigenmode computation 
should be started. Specify the number neigv of wanted eigenmodes in 
*CONTROL_IMPLICIT_EIGEN-VALUE keyword. Then we set lflag=1 to 
separate the six rigid body modes from the structural modes. We choose as 
separation point lftend some frequency between the six and the seventh 
eigenfrequency, for example half the value of the seventh. After running this 
analysis the eigenmodes are written to the d3eigv file. 
 
The eigenmode basis determined without boundary constraints is now unique. In 
the case of applied boundary constraints the elimination of the rigid body motion 
of course depends on the boundary constraints. For further analysis with LS-
DYNA this is not important at all, but the absence of boundary constraints clearly 
improves the visibility of the modes and makes it easier to judge their quality and 
their importance for the expected response. Since all eigenmodes are orthogonal 
to each other, after removing the first six rigid body modes no free motion will be 
in the eigenmode basis anymore. (Note that in principle it is possible to include 
free body motion in the eigenvalue database. The setup in LS-DYNA is such that 
it should be removed automatically. Unfortunately this procedure is not always 
unique, thus it currently appears better to do it manually.)
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Now we are ready to perform the transient modal respectively combined 
nonlinear analysis with explicit time integration, the central difference scheme. 
For this we have to go back to the original explicit keyword file of the model. First, 
for all parts belonging to flexible rigid bodies *MAT_RIGID (type 20) must be 
used. If any flexible rigid body consists of more than one part, it is necessary to 
choose one of them as a master part and merge the others with 
*CONSTRAINED_RIGID_BODIES keyword. Next, the *PART_MODES keyword 
is used to load the eigenvalue database for each flexible rigid body. In column 
pid we specify the part ID or the master part ID of the flexible rigid body. The 
parameter nmfb defines the number of modes used for the flexible description. 
Then we set form=0 to choose second order accuracy for the flexible body 
formulation, necessary for large rigid body rotations in one time step. If we do not 
have large deflections and/or large angular velocities, we can choose form=1 for 
a faster analysis but reducing us to only first order accuracy. Since computational 
savings with this scheme usually are not very relevant, we do not recommend the 
latter unless it is really necessary. Computational costs are growing linearly with 
the number of modes using first order scheme, and quadratically using second 
order scheme. We select format=3 to specify a LS-DYNA eigenvalue database 
as type of the input file named filename. 
 
The treatment of constraints needs special care. In practice, this may be the most 
cumbersome part of the work as all constraints between parts belonging to the 
same flexible rigid body have to be removed. Note that this part has been set 
rigid, and interactions between flexible rigid parts are not allowed to be imposed 
by constraints. If any constraints were active in the previous eigenvalue analysis, 
then they will be automatically fulfilled by our modal database. 
 
 

Numerical Investigations 
 

HEAD IMPACT 
Our first example is the LS-DYNA Model of the Hybrid III 50th Free Motion Head 
Form ([2], see figure 1). It consists of 5935 nodes, 4374 shell, 3028 solid and 12 
beam elements. The skin is made out of *MAT_OGDEN_RUBBER while other 
parts are modeled with *MAT_RIGID. Our investigation now is focusing on 
different models of the plate. In a first test the head model is dropped onto a fully 
elastic plate. The plate consists of 1050 nodes and 480 shell elements. All 
geometry and material data are taken from [2]. The unit set S3 is used, i.e. basic 
units are kilogram, millimeter and millisecond. As boundary conditions, we have 
chosen to put constraints in all three directions on all eight corner nodes of the 
plate.  
Considering now the plate as flexible rigid body – thus as rigid body with 
superimposed modal analysis, we have to be careful applying the boundary 
conditions. As mentioned above, a direct incorporation of Dirichlet boundary 
conditions into the flexible rigid body is not possible. This example illustrates the 
first of the two possibilities we suggested to avoid this problem. The elements 
connected with constraints are excluded from the flexible rigid body, see Fig. 3. 
To obtain good results in the eigenvalue analysis of structures with solid 
elements we strictly recommend to use the fully integrated S/R solid element (set 
elform=2 in *SECTION_SOLID keyword). Figure 3 shows the first three 
eigenmodes. 
 
For the fully elastic model discretized by solid elements – not looking at locking 
effects, the computation time with explicit time integration on an AMD Athlon 
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2200 machine is 244 sec. Using flexible rigid bodies with 2nd order update, the 
computation time is 237 sec for 10 modes, 246 sec for 40 modes and 258 sec for 
100 modes. The extra cost for modal analysis is about 8 sec for 100 modes. 
Note, that the computation with explicit time integration for the head alone without 
considering the plate and contact time for the same time interval takes 199 sec, 
while the analysis of the fully flexible plate alone takes only 2 sec. Since the 
modal method is taken here only for the plate as flexible rigid body, there is 
essentially little space for reduction of computation time. We will focus on this in 
more detail in the next example. 
 

 

 Fig. 1: LS-DYNA Model of the Hybrid III  
            50th Free Motion Head Form 

Fig. 2. Comparison of the solution 
          with explicit and modal 
method; 
          displacements of one node 

 
 
 
 
 
 
 
 
Contact occurs after three milliseconds. Fig. 2 shows the resultant displacements 
of a typical node on top of the plate in the contact area directly below the head. 
The solution of the system with explicit time integration is compared with the one 
obtained using 10, 40 and 100 modes, respectively. The relative error of the 
maximum displacements compared with explicit time integration is 19.0% with 10 
modes, 4.2% with 40 modes and 2.3% with 100 modes for this single quantity. 
 
We have to note that this system is far too small to show the real gain in 
computation time, but it can be clearly seen that the error using a reasonable but 
small number of modes remains rather small. 
 
HEAD IMPACT against a SIDE PART 
Our second example is similar to the first, but instead of the plate we use a more 
realistic part, namely a side part of a car. It consists of 13289 nodes and 12893 
shell elements. *MAT_PIECEWISE_LINEAR_PLASTICITY is used to model the 
material behavior for the deformable case. In Fig. 4 on the left the side part and 
on the right the position of the head are shown.

     Fig. 3: First three eigenmodes of the plate
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The computation time is 1186 sec for explicit time integration of the fully 
deformable model. Using modal analysis with 2nd order update for the rigid body 
rotations it is 998 sec for 20 modes and 1163 sec for 40 modes. The extra cost 
for modal analysis is about 78 sec for 40 modes. In this example, the 
investigation of the side part alone with explicit time integration would cost 383 
sec treating it as fully deformable and 87 sec treating it as rigid. Thus, the 
maximum possible gain using modal methods can be 296 sec. Fig. 5 shows the 
deflections of two typical nodes, one close to the impact location and the other 
one far away at the right end. It is clearly visible that the correct answer far away 
from the impact cannot be achieved with a modal analysis based on a reduced 
set of modes, as the latter leads to neglecting parts of the wave propagation 
effects. 
 
 
SHEET METAL FORMING 
As next example we take a very simplified model to find out, if the method can be 
also used for problems with multiple and different contact conditions. A thin blank 
discretized with 4719 shell elements, *MAT_3-PARAMETER_BARLAT is pushed 
by a die (modeled by 5292 solid elements, *MAT_ELASTIC) into a matrix, see 
Fig. 6. Now we want to include some deformations of the die by considering it as 
flexible rigid body. The counter form on the matrix is intentionally added, to 
impose a higher deformation on the die at the end of the closure. In this example,

head model

selected nodes

Fig. 4: Side part of a car and position of the head before impact. 

Fig. 5: Deflections of two typical nodes – comparison between explicit and  
           modal solution 

node in B-column                                                   node in C-column 
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 it would be possible, in general, to incorporate the boundary conditions by 
moving the centre of mass of the flexible rigid body down. Unfortunately this 
action would change the system slightly compared to the incorporation of 
Dirichlet boundary conditions on the top of the die and the results would not be 
easy to compare. Therefore we have chosen the second way and added some 
solid elements on top and applied the Dirichlet conditions to them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the fully deformable model, the computation time with explicit time integration 
on an AMD Athlon 2200 machine is 599 min. Using flexible rigid bodies with 1st 
order update for the rigid body rotations, the CPU time is 233 min for 10 modes, 
271 min for 20 modes, 298 min for 30 modes, 331 min for 40 modes, 382 min for 
50 modes, 408 min for 60 modes and 459 min for 70 modes. Extra costs for 
modal analysis are about 122 sec for 70 modes. 
 
Fig. 7 shows the deformations of a typical node of the bottom of the die. Since 
nearly all deformations in this example are dominated by the contact conditions, 
the modal approximation with 10 modes is already very acceptable. Note that in 
the case of a rigid die all deformations of the tool would be equal to zero. 

 
Fig. 7: Comparison of solution with explicit and modal method - displacements of  
           a typical node 

Fig. 6: Simple test example for sheet metal forming. 

selected node
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Summary and Conclusions 

 
Modal methods offer the possibility to superimpose linear deformations from a 
previously computed eigenmode basis onto a rigid body. The method works with 
high accuracy for models with small numbers of degrees of freedom while 
becoming an approximate procedure with large numbers of degrees of freedom. 
Care has to be taken with the treatment of constraints and boundary conditions. 
Of course, the method works only on the elastic part of the deformable rigid body. 
The presence of other constraints, e.g. contact conditions, will slow down the 
overall efficiency in comparison with the examples given in [1]. 
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