The Development of the new XJ Jaguar in Advanced Aluminium; Opportunities and Challenges

Zeguer, T., Jaguar Cars

CONTENTS

- ➤ Introduction
- > Design considerations
- ➤ Safety considerations
- ➢ Models database creation
- ➤ Conclusions

The XJ Saloon

- Flagship Jaguar, essence of the brand
- Over 800,000 sold over half of all Jaguars ever made
- Seventh generation XJ since 1968

34 Years of the Jaguar XJ Saloon

XJ Series I 1968-73

XJ 40 1986-94

XJ Series II 1973-79

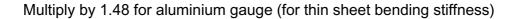
XJ Series III 1979-86

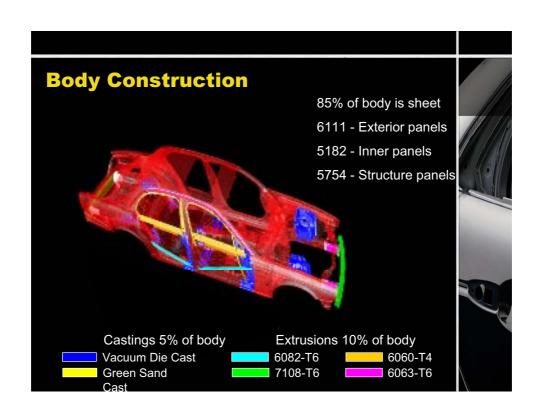
X308 1997-2002

New XJ LWV Targets

- ≻40% body weight saving for complete body and increase torsional stiffness.
- ➤Meet world safety standards
- Ease of repair. Bolt-on front end for low speed damage repair
- Improved performance, economy, emissions
- Enhanced feature specification
- >Improved interior/ luggage space.
- >Durability to be at least as good as steel

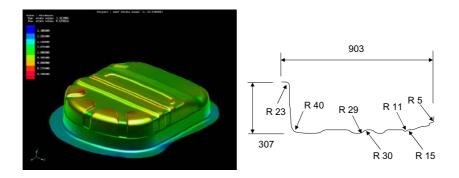
New XJ Delivers


- 40% body weight saving 60% increase in stiffness
- Up to 200kg reduction in vehicle weight (3.0 v 3.2)
- Excellent safety and corrosion performance
- Reduced cost of ownership with competitive insurance ratings
- > Improved performance, economy, emissions
- > Improved headroom, legroom, luggage space
- Instantly recognisable Jaguar design
- Acknowledged Jaguar ride & handling balance


Gauge Reduction Rationale

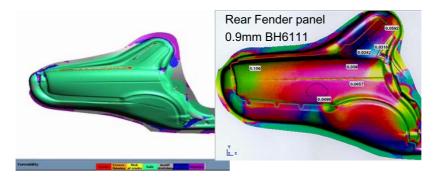
Basic equation to convert steel gauge to aluminium gauge :-

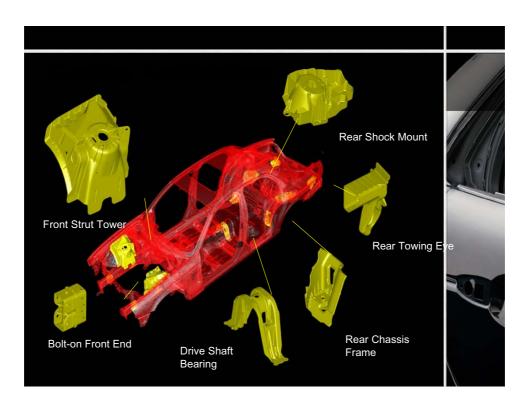
Conversion results in stiffness match between steel & aluminium


Steel gauge	Al. Gauge	% Weight Save	
0.75 mm	1.08 mm	52%	
1.00 mm	1.44 mm	52%	
1.20 mm	1.73 mm	52%	

Structural Panel Development

Aluminium design & stamping guidelines used on all parts.

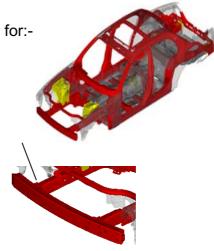



Structural Castings

- Castings selected in key areas for:-
 - Complex geometry unfeasible as stamped parts
 - Local stiffness in high load input areas
 - Improve part integration
 - Reduce tooling investment
 - Reduce multiple sheet stack-up issues
 - Self pierce rivet joining to other parts

Exterior Panel Development

- Extensive use of CAE & development die program to validate style
- Spring back compensation major issue with aluminium



Extrusions

- Extrusions selected in key areas for:-
 - Weight save & reduced part count
 - Reduced tooling investment
 - High strength applications
 - Ability to form simple shapes/profiles

> Application includes:-

- Cant Rails, Bumper Beams, Side Impact Beams, Door Frames & Crush cans
- > Material selected 6063-T6, 6060, 6082, 7108-T6

Front Bumper Beam

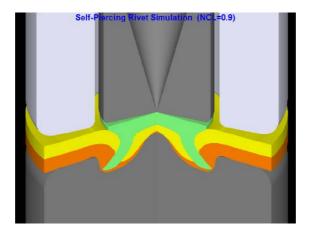
Door Assembly

Sheet Material Outer AA6111-T4 Inner AA5754-H0 AA6060 Extrusion Upper Frame Waist Rail Side Impact Beam **Die Casting C446** Hinge Reinf. Panel

Hybrid of aluminium grades, processes

•MIG welding

 Rivets 		Equivalent steel	XJ alu hybrid	Weight saved
 Adhesive 	Front Door	19Kg	10.48Kg	45%
	Rear Door	15Kg	8.72Kg	42%


Henrob Self-Piercing Rivets

SPRs selected as the best joining technology for the LWV structure:

- Preferred joining technology of the aircraft industry
- Increased performance versus welding
- Cold joining process no heat distortion of parts
- Material thickness & stack-up combinations
- Compatible with adhesive bonding process


Riveting Process Simulation

New Jaguar XJ - the world's first volume riv-bonded monocoque vehicle

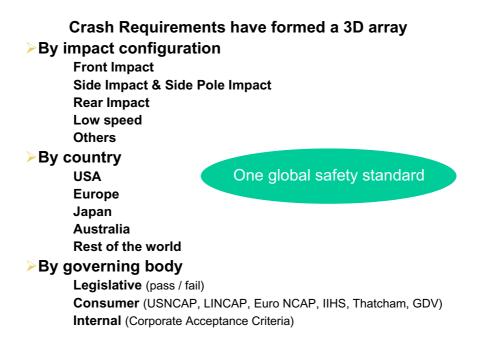
Adhesive Bonding

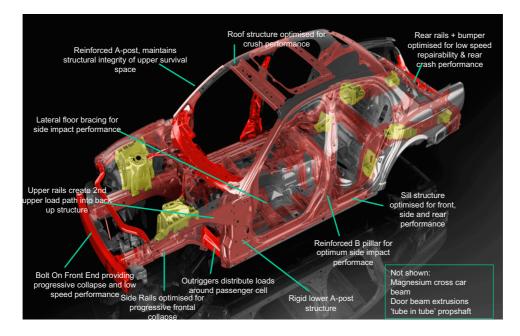
- Challenge was to find the best joining technology for the LWV structure:-
 - FEA used to select optimum joints for adhesive bonding
 - Enhances Strength, Durability & Stiffness - selective bonding
 - Single part heat curing epoxy
 - Pumpable paste applied in BIW assembly
 - Compatible with PT2 surface pre-treatment & AL070 stamping lubricant

Riv-Bonding Rationale

	↑ 1		Pull Strength	Vibration (fatigue)
I		Spot welded steel (1.2 mm CR2)	74 Kg	12 Kg
\langle		Spot welded alumir (2.0 mm 5754-0)	iium 78 Kg	5 Kg
		Riveted aluminium (2.0 mm 5754-0)	215 Kg	17 Kg
		Bonded aluminium (2.0 mm 5754-0)	174 K	62 Kg

Self pierce rivets	3204
Clinch spots	78
Structural adhesive (m)	104
MIG weld (metres)	2
Weld studs (trim fix)	40
Weld studs (ground)	26
Blind rivets	180
Cast parts	15
Extruded parts	35
Stamped parts	284

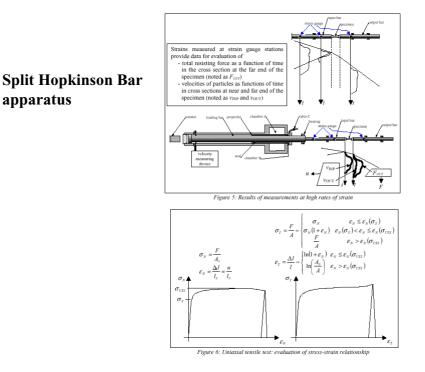

New XJ BIW information



New XJ Safety Philosophy

Engineered to be amongst the worlds safest vehicles

- >World safety standards Proven via:
 - 1000+ CAE virtual crash tests using 175,000 hrs of computing power
 - >79 full vehicle crash tests



Crash Structure Simplified

New XJ Restraints System

- > A.R.T.S. key elements
 - > occupant weight & position sensing
 - > dual stage driver & passenger airbags
 - > multi-point distributed crash sensing
 - safety belts with pyrotechnic pre-tensioner for all occupant positions
 - fronts safety belts with limiting retractors
- Combined with
 - side curtain & front seat thorax airbags
 - ➤ "beltminder"
 - > anti-whiplash front seats

High Speed Crash Performance

world optimisation of crash performance

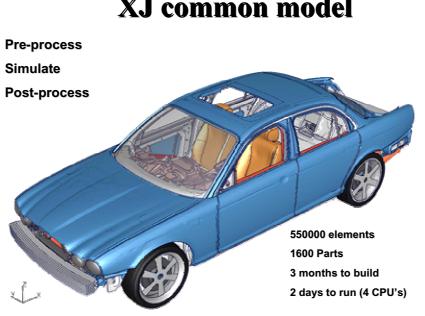
High Speed Crash Performance


- Very stable structure delivering excellent occupant protection
 - minimal a pillar deformation (at roof)
 - good door aperture stability all doors openable after crash
 - controlled bulkhead intrusion providing a stable platform for the IP beam;
 - > minimising steering column intrusion
 - ➢ providing stable deployment of front airbag restraint system
 - Iow toeboard intrusion to minimise lower leg injury
 - > limited floorpan deformation in seat mounting area
- Delivering controlled occupant kinematics

The New FMVSS208

- Probably the most comprehensive measure to date for all round frontal crash performance, the new FMVSS208 is introduced 2003-06
- Test consists of 25-30 mph belted and unbelted tests into full frontal and angled barriers, plus verification of safe airbag deployment.
- The Jaguar XJ's crash architecture and ARTS equipment is expected to make this the first passenger car to meet this legislation

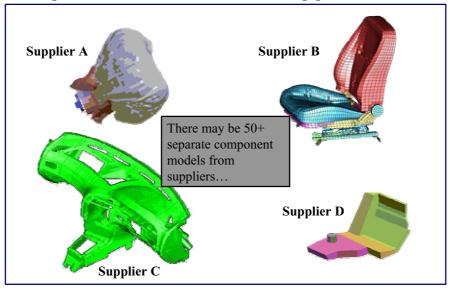
Front Impact Euro NCAP – ODB 64 kph


Vehicle Collapse Mechanisms Using Films and Photos, Post test and Strip Down

<section-header>

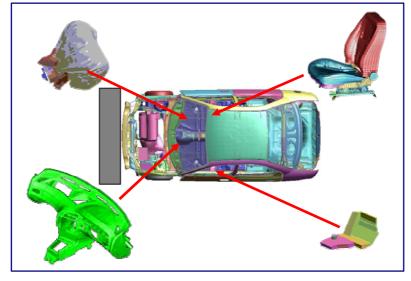
New XJ Safety Performance

- New XJ has excelled in Jaguar's internal testing and makes significant strides in safety protection
- > Strong aluminium body structure provide excellent occupant protection
- > The vehicle includes a comprehensive array of safety technology including Jaguars sophisticated ARTS system
- > Low speed performance has resulted in very competitive insurance group ratings ahead of key competitors
- > Non derivatised safety features mean all customers benefit from a vehicle engineered to world safety standards

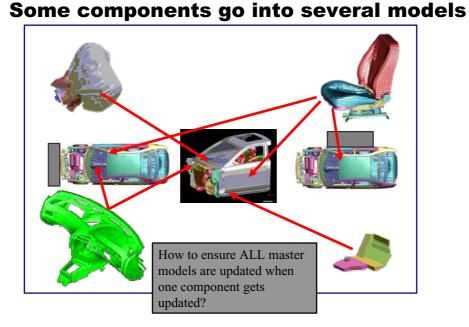

XJ common model

Current process

- The model building process is extensive. Engineers spend months building the models for just one vehicle configuration.
- Even with experienced engineers, it take a long time to debug complex models.
- New engineers take a long time to build crash models and even longer time to debug them.
- Storage space needed for every engineer to perform its own analysis.
- Connecting shared components isn't easy because of design changes.
- Simulation is not as effective as it could be because models take too long to build.
- Quality, cost and stress.

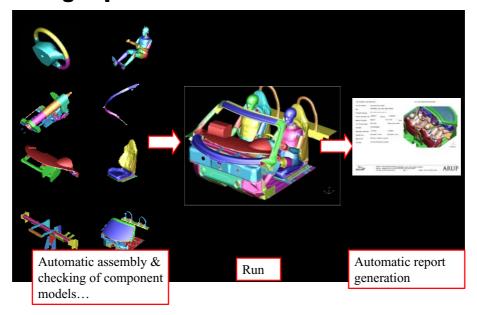

Why we need the new process ?

No more Bad supplier models !!!!



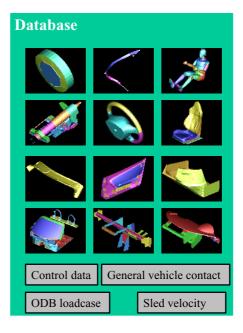
Component models from suppliers...

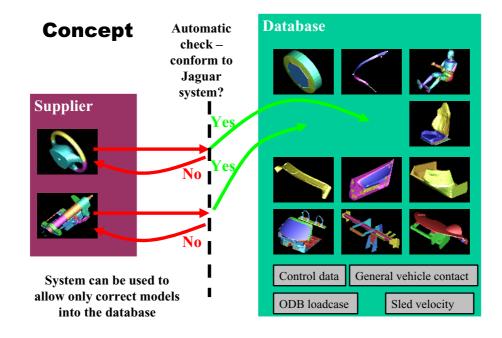
... must be integrated into crash models

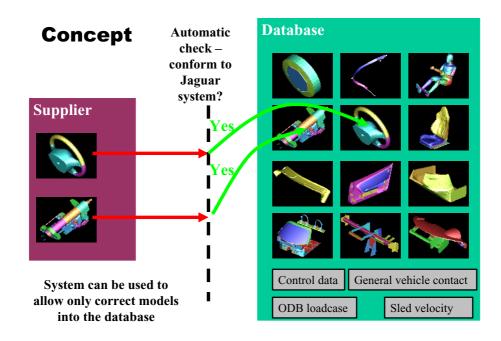


Integration needs work from Team C Fror checking Numbering system Connection methods Model organisation Chance of errors... Repeat the work for each new release of component model... Some of these issues also arise with Jaguar-generated component models

Problems of Model Organisation:

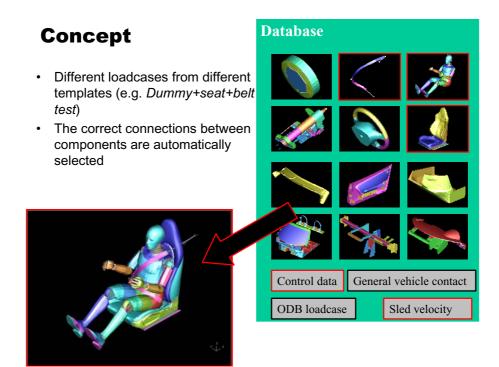

- How to achieve reliable system when so many separate components are provided by different suppliers?
- How do we ensure that <u>all the correct</u> component models are chosen for each crash load case?
- How do we ensure that the <u>most recent</u> frozen version of a given component is used in every crash load case?




Target process.. So what does this all mean

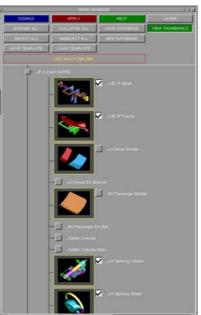
Concept

- Database of "ingredients": components and other model data
- Entry to database controlled by nominated Jaguar person
- Software can check the models prior to entry to database for conformity to Jaguar system
- Database will contain only checked, error-free models and data



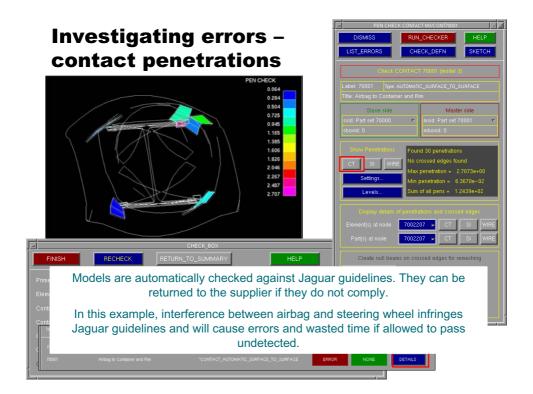
<section-header><section-header>

A – II - 40

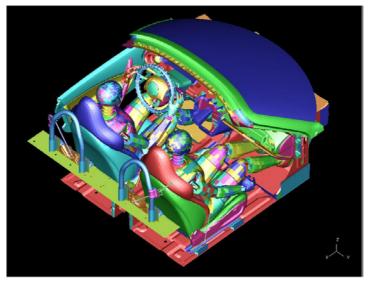


Example – selecting components from the database

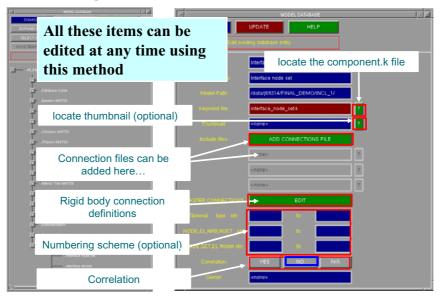
Component models in database are presented graphically, in a hierarchical tree structure.

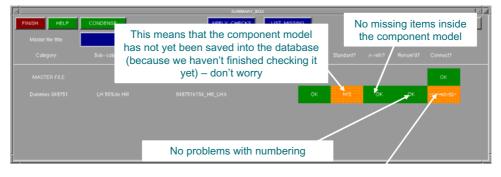

Users can click to select each component...

...or use a ready-made template containing the correct pattern of ticks for each loadcase



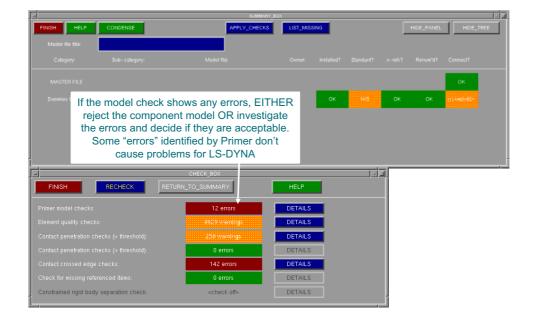
Benefits of new process

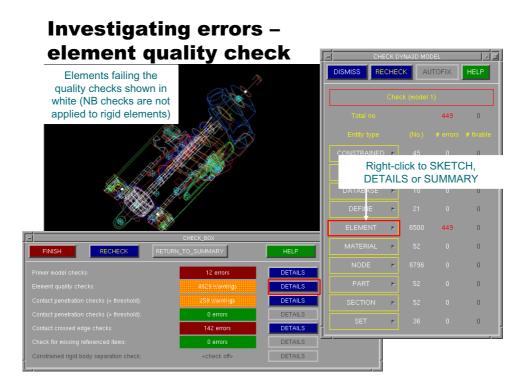


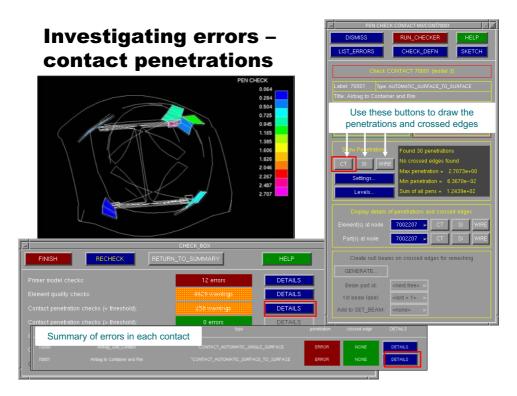


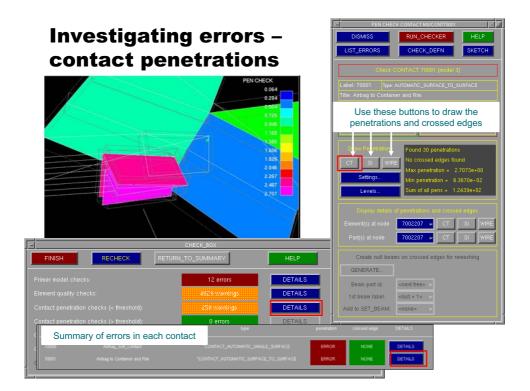
Result: ready-to-run, error-free model

Installing a component model

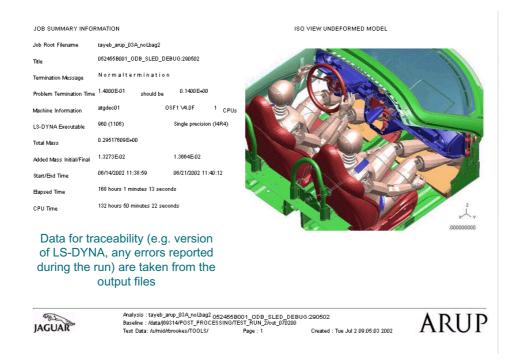



Checking the component models




Don't worry – connections to other components have been deleted

Checking the component models



Automatic post-processing

- Report generated automatically from LS-DYNA results
- Same report template easily applied to different models
- All Euro-NCAP injury measures are calculated
- Writes report in web-ready or printable format
- Next slides show example pages

Conclusions

- We chose the lightweight vehicle architecture for the New XJ not because it was new, but because it would help us deliver significant benefits for our customers
- Ls_Dyna was effectively used for the new XJ car from concept to production.
- Opportunities was identified for further LS_DYNA development to models complexities such as:
 Structure: casting, rivets, adhesive, material failures
 - Restraints: airbags, seatbelts, Composite materials.
- More automation is needed in producing high standards models so that engineer could concentrate in helping design than debugging models.

Plenary Session II

4th European LS-DYNA Users Conference