The application of the damage & fracture material model to crashworthiness evaluations for Aluminum cars

The Improvement of the damage and fracture criterion of MAT81 : MAT81_ORTHO

Authors:
Takuji Tsuchida¹, Shuitsu Yamamoto², Kazunobu Isomura³
¹, ² TOYOTA MOTOR CORP., Japan
³ TOYOTA INDUSTRIES CORP., Japan,

Correspondence:
Takuji Tsuchida
TOYOTA MOTOR CORP., Japan
HIGASHIFUJI TECHNICAL CENTER
1200 Misyuku, Susono, Shizuoka
Japan 410-1193
Tel: +81-(0)559-7653
Fax: +81-(0)559-7871
e-mail: takuji@tsuchida.tec.toyota.co.jp

Keywords:
damage & fracture material model,
finite element modeling, crashworthiness analysis
ABSTRACT

In an evaluation of crashworthiness for the cars that are made of aluminum alloys, the evaluations that consider a fracture phenomenon come to be needed because conventional aluminum alloys have low fracture strain (10 - 20%). Since an original damage & fracture material model of LS-DYNA, namely MAT_PLASTICITY_WITH_DAMAGE: MAT81 has a damage & fracture characteristic in case of compressive strain state, real collision phenomena can not be simulated in some cases. Therefore, we reviewed the damage & fracture criterion of this material model. We newly introduced some sort of a damage & fracture criterion into the MAT81 of LS-DYNA V960 in later revision and performed crashworthiness evaluations for an aluminum car using this improved damage & fracture model. This criterion has non-damage & non-fracture characteristic in compressive strain state and it is known as "Orthogonal an-isotropic (Orthotropic) damage & fracture model".

INTRODUCTION – the feature of MAT81

This material model has ISOTROPIC damage & fracture characteristic shown in Fig.1 - 2. Its uni-axial stress-strain curve is completely symmetrical about an origin. Damage (material softening) and fracture occur in tensional and compressive regions. The fracture judgment is done by equivalent plastic strain.

Expected Responses in case using MAT81

In case of pure compressive or bending condition, we thought that some wrong responses were expected for ductile material like aluminums as Fig.3, because of the compressive fracture characteristic of MAT81.
Using MAT81 and type16 shell element, we examined some strength simulations about axial compression and bending tests (Fig.5 - 8), but we couldn't get good agreement with the test results. Material properties that were used in these simulations were measured from uni-axial tensile tests. Specimens in a coupon shape were cut from actual parts and their strains were measured by optical (Fig.4).

In those cases (Fig.5 - 8), the compressive strain that occurred on the inside of R caused early fracture and early element rupture. Fig.6 shows a stress-strain history of a certain element that ruptured at early time. It shows that the compressive strain on the inside of the R firstly reached at a fracture strain and last, the tensional strain on the outside of the R reaches at a fracture strain and it is thought to be wrong.

Fig.3 Expected responses in case using MAT81

Computational results using MAT81

Using MAT81 and type16 shell element, we examined some strength simulations about axial compression and bending tests (Fig.5 - 8), but we couldn't get good agreement with the test results. Material properties that were used in these simulations were measured from uni-axial tensile tests. Specimens in a coupon shape were cut from actual parts and their strains were measured by optical (Fig.4).

In those cases (Fig.5 - 8), the compressive strain that occurred on the inside of R caused early fracture and early element rupture. Fig.6 shows a stress-strain history of a certain element that ruptured at early time. It shows that the compressive strain on the inside of the R firstly reached at a fracture strain and last, the tensional strain on the outside of the R reaches at a fracture strain and it is thought to be wrong.
reached at a fracture strain (see a mark “x” in Fig.6). Therefore, the fracture criterion was satisfied at all integration points and the element ruptured.

<CASE1>

An axial compression test of a straight member with octagonal section

Fig.5 The deformation comparison (MAT81)

Fig.6 The stress-strain state of the ruptured element
<CASE2>

A 3 points bending test of a straight member

Undesirable crack at opposite top portion

Original MAT81

TEST RESULT

Fig. 7 The deformation comparison (MAT81)

<CASE3>

An upside down case of the case2

Undesirable cracks at each side

Original MAT81

TEST RESULT

Fig. 8 The deformation comparison (MAT81)
Approach

From those results, we thought that compressive strain makes wrong responses for ducktail failure in case using ISOTROPIC fracture criterion. Therefore, we invoked "Orthotropic damage & fracture model" to exclude compressive strain from the fracture criterion (Fig.9).

Tension

![Tension Diagram](image)

Compression

![Compression Diagram](image)

(a certain limitation exists)

Bending

![Bending Diagram](image)

Original MAT81 | The improved: MAT81_ORTHO

Fig.9 The Approach
The feature of "MAT_PLASTICITY_WITH_DAMAGE_ORTHOS" – MAT81_ORTHOS

(1) An element ruptures, if one of principal strains (Fig.10) reaches at a tensional fracture strain (If principal strain is compressive one, it is excluded from fracture judgment). Fracture is judged at each integration point.

(2) In compressive region, material damage (softening) never occurs.

(3) Rupture timing is controllable. The number of integration points to judge fracture is optional (from 1 up to all integration points).

(4) From (1), if an element is forced excessive uni-axial compression, the principal strain that is perpendicular to the axis may reach at a fracture strain (Fig.11) because of the constant volume requirement in plastic deformation. In the case, the element is deleted as rupture. This is a limitation of Orthotropic Model.

The characteristics of MAT81_ORTHOS are shown in Fig.12 - 13 and Table 1.

Fig.10 Principal Strains

Fig.11 A limitation of Orthotropic Model

Fig.12 The damage characteristic

Fig.13 The fracture criterion
Table 1 Summary of damage & fracture models

<table>
<thead>
<tr>
<th>Material Model</th>
<th>Strains to be considered</th>
<th>Tensile Strain State</th>
<th>Compressive Strain State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Damage</td>
<td>Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(softening)</td>
<td></td>
</tr>
<tr>
<td>MAT81</td>
<td>Equiv. Plastic Strain ε_p</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>The improved</td>
<td>Princ. Plastic Strains($\varepsilon_1, \varepsilon_2$)</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>(MAT81_ORTH0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- : No Consideration

The Application to strength evaluations

We evaluated the same examples by using MAT81_ORTH0. In these cases, the number of integration points for fracture judgment is all (blank field means "ALL") and type16 shell element was also used. The results had acceptable correlation with the test results.

CASE1: An axial compression test of a straight member with octagonal section

Fig.14 - 16 show that the results of the axial compression simulation. Using MAT81 with ORTH0 option, we managed to simulate the folding mode. Fig.15 shows a comparison of stress-strain history of the element that ruptured at early time in case using original MAT81.

It shows that the compressive strain on the inside of the R reached at a fracture strain (see a mark "x" in Fig.15), but the improved fracture criterion ignored it, then this element wasn't deleted as rupture.

![MAT81_ORTH0](image1)

![TEST RESULT](image2)

Fig.14 The deformation comparison (MAT81_ORTH0)
The strain history of the element

Fig. 15 The strain history of the element

Fig. 16 The load-displacement comparison

Tensional Stress acts on the outside of R

Compressive Stress acts on the inside of R

A cut section of a folding portion

Fig. 16 The load-displacement comparison
Fig. 16 shows a comparison of the load-displacement curves. The result that used ORTHO option has acceptable correlation with the test result.

CASE2: A 3 points bending test of a straight member

Fig. 17-18 show the results of the 3 points bending simulation. The member is the same as the case1 that used original MAT81. In case using ORTHO option, we managed to simulate the crack that was occurred at sidewall. The crack in the ceiling that occurred in case using original MAT81 (Fig. 7) disappeared. Fig. 18 shows a comparison of the load-displacement curves. The result has good correlation with the test result.

![Deformation comparison](image1)

Fig. 17 The deformation comparison (MAT81_ORTHO)

![Load-displacement curves](image2)

Fig. 18 A comparison of the load-displacement curves
CASE3: An upside down case of the case 2

Fig.19-20 show the results of the upside down case of the case 2. Using ORTHO option, we managed to simulate the folding mode of the flanges. The cracks at each side of the member that occurred in case using original MAT81 (Fig.8) disappeared. Fig.20 shows a comparison of the load-displacement curves. The result has also good correlation with the test result.

Fig.19 The deformation comparison (MAT81_ORTHO)

Fig.20 A comparison of the load-displacement curves
We performed both a test and a simulation in consideration of side impact collision to estimate performances of a car-body made by aluminum alloys.

In this test, the car body was cut in half and the cutting edges of cross members were attached in a vertical fixed wall through load-cells to measure transmitted forces. A MDB was equipped with a hydraulic power cylinder to load force on the car body. The test was done by quasi-static condition.

Fig.21 shows the deformation of the body after the test. Fig.22 shows the model (a) and its cut section at a floor cross member (b). Fig.23 shows a comparison of the load-displacement curves about the transmitted force of the floor cross member.

The each result by original MAT81 or ORTHO option has good agreements with the test result. From the results, in both cases, it is found that the applied external loads from the MDB are much the same between the simulation and the test.

Fig 24 shows the deformation of the body that was viewed from inside of the cabin. A crack occurred at a B-Pilar flange by an end of an impact beam attached to a door.

Fig.23 The load-displacement curves
Fig.25-(a) shows the computational result that used ORTHO option. The initial crack at the B-Pillar's flange managed to be simulated, but propagation of the crack (it may be concern in Zipper effect) couldn't be simulated. Fig.25-(b) shows the computational result that used original MAT81. In the case, a wrong crack occurred below the actual one. We don't describe a precise explanation about that, but the reason of occurrence of the wrong crack is the same as we already mentioned. That is, the crack occurred by compressive strain on the inside of R.

Conclusion

(1) Using MAT81 with ORTHO option, crashworthiness evaluations for aluminum parts in consideration of material damage & fracture phenomenon come into action.

(2) In case of the application to the crashworthiness evaluation of our experimental aluminum car, MAT81 with ORTHO option had satisfactory performances.
Acknowledgements

We would like to thank J.O. Hallquist and his colleagues for their efforts to build up the material model and thank the members in CAE groups of both Nippon Light Metal Company, Ltd and KOBE STEEL, LTD for some suggestions about metal plasticity and damage & fracture phenomena. Furthermore, we would like to thank both F. Oshita and K. Hayashi of J.R.I. Ltd and M. Makino of Fujitsu Ltd for their supports in all aspects.

References

