
Recent Developments of LS-DYNA
Performance Optimization

Authors:

Youn-Seo Roh and Henry Fong
Sun Microsystems, Inc.

Correspondence:

Youn-Seo Roh
260 Constitution Dr.

MS MPK24-201
Menlo Park, CA 94025

U.S.A.

Tel: 650-786-6093
Fax: 650-786-6530

e-mail: youn-seo.roh@sun.com

Keywords:
SunFireTM servers, Sun ONETM Studio compilers,

performance optimization, tuning, scalability,
cluster performance

4th European LS-DYNA Users Conference MPP / Linux Cluster / Hardware I

K – I - 33

ABSTRACT

A recent effort of optimizing the performance of LS-DYNA running on
SPARC(R)-SolarisTM servers is described. With new releases of compilers, gener-
ated executables benefit from the additional performance of latest UltraSPARC(R)
CPU's for SMP servers. Also, new release of Sun HPC ClusterToolsTM cluster envi-
ronment includes tools that facilitates tuning of LS-DYNA-MPP executables and the
MPI environment. A collection of development tools targeted for SPARC perform-
ance improvement results in faster simulations, fully benefiting continuously updated
hardware performance. Those developments are exhibited with customer bench-
mark examples. With Sun ONE Grid Engine products, more efficient simulation envi-
ronment is viable for LS-DYNA simulation.

1. Performance Measurement
Code performance improvement starts with tools that measure behavior of

executables. This section describes some recent developments in Solaris-SPARC
performance measurement tools.

1.1. Hardware Counter Tools

Sun's Solaris development stack includes a number of performance meas-
urement tools. Of these, most relevant to measuring LS-DYNA performance is a set
of hardware performance counters called cpustat and cputrack [1], as well as
the application programming interface called cpc [2] that utilizes these performance
counters. cpustat measures system-wide behavior of the counters and requires
super user privilege to use, while cputrack measure process-wise statistics and
does not require super user privilege. In a multi-user, multi-process environment of
a server running different sorts of application, in many cases, cputrack gives accu-
rate account of CPU-related behavior of LS-DYNA processes.

 -------------------------est------------------------
 Ultra-III ticks sec %
 --
 D0_IC_miss 33325744728 36.306 12.6%
 D0_br_targ_calc 459873112 0.501 0.2%
 D0_2nd_br 51559648 0.056 0.0%
 D0_mispred 451455776 0.492 0.2%
 D_rs_mispred 203698744 0.222 0.1%
 Rs_storeQ 43962920640 47.894 16.6%
 Rs_FP_use 8410373720 9.162 3.2%
 Rs_IU_use 3384755336 3.687 1.3%
 Re_FPU_bypass 15152 0.000 0.0%
 Re_RAW_miss 1041032320 1.134 0.4%
 Re_DC_miss 38082830648 41.488 14.4%
 Re_EC_miss 4686765408 5.106 1.8% (in DC miss)
 Re_PC_miss 227774560 0.248 0.1%
 DTLB_miss 2042800 0.189 0.1%
 total 129775672384 141.381 49.1%
 --
 time 264376964512 288.019 100.0%
 instr 222093630424
 IPC 0.840 (instr/time)
 Grouping 1.650 (instr/(time-total))

 Figure 1. Example output of a multiplexed performance counter tool
of an LS-DYNA job.

MPP / Linux Cluster / Hardware I 4th European LS-DYNA Users Conference

K – I - 34

Cputrack utilizes two on-chip hardware performance counters which can measure
several different hardware events, including instruction and data cache misses as
well as other internal states of the processor. Only two event types can be measured
simultaneously, but by repeating runs it is possible to gather useful run statistics of a
user process. Especially if the application has a relatively constant run profile and
the total run is long enough to average out the variations in the measurements, it is
possible to obtain through multiplexing a meaningful run statistics in a single pass of
the job.

Figure 1. shows the example output of an internal tool that uses such
method. It reveals overall characteristics of LS-DYNA job including store queue
misses, instruction and data cache misses, as well as TLB(Translation Lookaside
Buffer) misses. With the output, the user will be able to have a clear concept of how
the application is performing in terms of CPU statistics.

More detail of the SPARC performance counter can be achieved from [3].
With the SPARC architecture available in public domain, and with the information
on the hardware counter along with the CPC API, it is possible for a Solaris user to
develop a customized performance characterization tool for his/her own purpose.

1.2. Compiler Tools: Performance Collector and Analyzer
Starting from Sun ONE Studio 6, Sun compiler includes performance tools

suite called collector and analyzer. Current release of Studio 7 and the version soon
to be released of Studio 8 [4] have additional improvements including MPI profiling.
Recent releases will also benefit from the CPU-specific information of the latest
hardware.

There are both GUI-based and command line-based version of the tools.
Analyzer is a GUI-based tools incorporate both data collection and analysis. Collect,
er_print and er_src are command line version of analyzer. Collect tool is based on
cputrack and can collect the run statistics in a experiment file and directory. After the
experiments are recorded with collector, analyzer (or er_print for command line) tool
can use the recorded experiment data. Experiment data to be analyzed includes
regular function profile, source code annotation of various metrics, and disassembly
listing.

With the previous results of the run statistics via hardware counters as ex-
emplified in Figure 1, it is now possible to figure out which line (with the aid of source
annotation) or which instruction (with the aid of disassembly listing) is contributing to
the achieved statistics. Figure 2 shows an example of a MPP-LS-DYNA run. The run
was collected with

% mprun -np $np collect $bin i=$data ncycle=$nc

This will create a default experiment directory and data under test.N.er, where
test.N.er will be created as separate directories as many as the number of ranks
of the MPI job. After the run, the experiment data will be analyzed by typing

% analyzer test.N.er (GUI version)
% er_print test.N.er (command line version)

Inside the analyzer (or er_print), it is possible to set various metrics including exclu-
sive or inclusive user CPU time. By appending function name to the metrics, function
profile is achieved. The example in Figure 2 shows exclusive user CPU time in sec-

4th European LS-DYNA Users Conference MPP / Linux Cluster / Hardware I

K – I - 35

onds and in percent total time, inclusive user CPU time in seconds and percent total
time, and function name, respectively.

% er_print test.0.er
(er_print) metrics e.user:e%user:i.user:i%user:name
(er_print) limit 10
(er_print) function
Functions sorted by metric: Exclusive User CPU Time
Excl. User Incl. User Name
CPU CPU
 sec. % sec. %
308.100 100.0 308.100 100.0 <Total>
 29.210 9.5 29.210 9.5 trnfbt_
 26.050 8.5 27.750 9.0 tranbt_
 20.130 6.5 20.130 6.5 shl3s_
 15.210 4.9 133.160 43.2 blytsy_
 14.110 4.6 14.110 4.6 mppcns13a_
 10.750 3.5 143.940 46.7 elem2d_
 9.200 3.0 9.200 3.0 stdspb_
 8.910 2.9 8.910 2.9 dfnls_
 8.870 2.9 8.870 2.9 tbsc1s_
 8.620 2.8 19.930 6.5 strgen_

Figure 2. Analyzer(er_print) function profile output from an MPI process.

With Studio 7 compiler and later, it is also possible to trace MPI function calls by in-
cluding -m option to collect command :

% mprun -np $np collect -m on $bin i=$data ncycle=$nc

MPI trace metrics available are: MPI Time, MPI Sends, MPI Bytes Sent, MPI Re-
ceives, MPI Bytes Received, and Other MPI calls.

% er_print test.2.er
(er_print)metrics

 i.mpitime:i.mpibytessent:i.mpisend:i.mpibytesrcvd:name
(er_print) limit 20
(er_print) functions
Functions sorted by metric: Inclusive MPI Time
Incl. Incl. MPI Incl. MPI Incl. MPI Name
MPI Bytes Sends Bytes
 sec. Sent Received
305.021 60418348 164054 4898051124 MAIN_
305.021 60418348 164054 4898051124 main
305.021 60418348 164054 4898051124 _start
305.021 60418348 164054 4898051124 <Total>
305.019 60414524 163992 4898049192 overly_
304.628 55853468 163489 4895694108 fem3d_
304.628 55853468 163489 4895694108 soltn_
274.258 550872 41788 550872 pmpi_allreduce_
274.258 550872 41788 550872 PMPI_Allreduce
 29.921 6907480 111463 4440882696 mppcon_
 29.008 6743904 91462 4440718544 mppc13_
 29.008 6743904 91462 4440718544 mppc13a_
 19.282 0 0 4568334348 pmpi_recv_
 19.282 0 0 4568334348 PMPI_Recv
 14.467 2107112 19997 1765326864 snfsum_
 6.183 0 0 0 pmpi_waitall_
 6.183 0 0 0 PMPI_Waitall
 4.755 2733776 59978 1764250872 mppccpm_
 4.338 161216 40304 161216 pmpi_alltoall_
 4.338 161216 40304 161216 PMPI_Alltoall

Figure 3. Analyzer function profile output with MPI call tracing turned on.

MPP / Linux Cluster / Hardware I 4th European LS-DYNA Users Conference

K – I - 36

After verifying the function profile, it is possible to view the source annotation
to find out specific line that contribute to the timing. It is possible to view various met-
rics including hardware counter values associated with each line of source. It is also
possible to view compiler commentaries generated during compilation process next
to the source line. Figure 4 shows, for example, the process of collecting for measur-
ing data cache read miss rate, annotated alongside the source line. % collect com-
mand without any argument or option will print out available hardware counters for
collecting. The example below was invoked with

% mprun -np 1 collect -h dcr,,dcrm $bin i=$data ncycle=$nc

where dcr and dcrm are the counter names that are recognized inside collect
command, and represent “Data Cache Read reference” and “Data Cache Read
Misses” respectively. After the run, when er_print is invoked, the default metrics is
automatically set for e.dcr:i.dcr:e.dcrm:i.dcrm:name, which stands for “exclu-
sive D-cache read reference, inclusive D-cache read reference, exclusive D-cache
read misses, inclusive D-cache read misses, function name.” This default metrics
can be changed by metrics command inside er_print.

% er_print test.3.er
(er_print) metrics e.dcr:e.dcrm:e%dcrm:i%dcrm:name
current: e.dcr:e.dcrm:e%dcrm:i%dcrm:name
(er_print) sort e.dcrm
current sort metric: Exclusive D$ Read Misses
(er_print) limit 10
(er_print) functions
Functions sorted by metric: Exclusive D$ Read Misses
Excl. D$ Excl. D$ Read Incl. D$ Name
Read Refs Misses Read
 % Misses %
71451878355 2116114464 100.0 100.0 <Total>
 8349086731 429813610 20.3 20.3 trnfbt_
 7176078267 252307951 11.9 11.9 tranbt_
 2732022528 176605570 8.3 57.3 blytsy_
 1387011338 150505499 7.1 7.1 tbsc1s_
 2601027221 92702994 4.4 4.4 mppcns13a_
 1016008219 90902729 4.3 4.3 updatec_
 1913017553 83002622 3.9 3.9 frcbt1_
 970006243 69002183 3.3 60.6 elem2d_
 1043007930 63501927 3.0 99.8 fem3d_

Figure 4. performance analyzer output based on hardware counter.

As can be seen in Figures 4 and 5, the user can immediately notice which part of
code is becoming a performance bottleneck, and further investigation on how the
system behavior is at the CPU register level is possible.

In addition to the source annotation, it is also possible from within the
analyzer(er_print) tool to obtain the disassembly listing of a file or a function of inter-
est. It will further enhance the understanding of code performance. Disassembly list-
ing can be obtained as

(er_print) disasm <file name or function name>

with appropriate metrics settings.

4th European LS-DYNA Users Conference MPP / Linux Cluster / Hardware I

K – I - 37

(er_print) <with previous settings>
(er_print) src trnfbt_

...
 Excl. D$ Excl. D$
 Read Refs Read
 Misses
 7000032 1400044 1. subroutine trnfbt(e,...)
...
 Loop below pipelined with steady-state cycle count ..
 Loop below unrolled 1 times
 Loop below has 11 loads, 6 stores, 0 prefetches,

 6 FPadds, 6 FPmuls, and 0 FPdivs per iteration
 219. c
 0 0 220. if (icase(18).eq.0) then
 221. c
 2000010 0 222. do i=lbnd,ubnd
 106000945 9600289 223. xft31(i)=-xft11(i)+gym3(i)*qzs1(i)
 38000383 2900088 224. xft32(i)=-xft12(i)+gym3(i)*qzs2(i)
 45000431 4100125 225. xft33(i)=-xft13(i)+gym3(i)*qzs3(i)
 55000535 4500147 226. xft41(i)=-xft21(i)+gym4(i)*qzs1(i)
 42000362 2800085 227. xft42(i)=-xft22(i)+gym4(i)*qzs2(i)
 164001550 6300192 228. xft43(i)=-xft23(i)+gym4(i)*qzs3(i)
 229.
 0 0 230. enddo

Figure 5. Performance analyzer output with source annotation along
with hardware counter (D-cache) information (Source code altered).

1.3. Solaris large page support

 Although this cannot be categorized as performance measurement tools, but
the large page support that became available as of Solaris 9 offers a run-time per-
formance improvement opportunity. Even before Solaris 8, it was possible to utilize
process memory pages larger than 8kByte default using such tools as Intimate
Shared Memories (ISM). But with this operating system support, it is possible with
just command line options to change the page sizes between 8k, 64k, 1M, and 4M.
The relevant commands are [5] :

% ppgsz -o heap=4M ls970 i=$data ... (for SMP)
% mprun -np $np ppgsz -o heap=4M mpp970 i=$data ... (for MPP)

After launching the process with a specified page size, the process page size can be
verified with % pmap -s <pid> | grep heap .

Larger page sizes can be beneficial in improving a significant TLB misses,
which is not uncommon for a large datasets. A hardware counter tools such as what
is explained in Section 1.1. and Figure 1 can be used to measure the portion of TLB
miss time out of the total run time. If the measurement shows a significant amount,
then the job can be launched with large pages set.

2. OpenMP Performance Improvement
With the aid of performance measurement tools, it was possible to obtain an

optimization of LS-DYNA binary, both -SMP and -MPP version. In this section, we
describe an example improvement for a customer's stamping application where the
performance of -SMP binary became an issue.

2.1. Loop splitting

MPP / Linux Cluster / Hardware I 4th European LS-DYNA Users Conference

K – I - 38

It is found that most of time-consuming routines of LS-DYNA run spends
time in loops with many floating point instructions. The instruction pipeline scheduler
makes uses of floating point registers, but in many cases, sheer number of instruc-
tions poses excessive load on the scheduler, causing it to fail to schedule the loop.
This is usually helped by splitting the loops into smaller ones. In many cases, this
technique helps performance noticeably. In the current customer's case, loop split-
ting was used to improve the run-time performance.

2.2. Compiler prefetches
Sun compiler has been continuously improved in its prefetch capability. Pre-

fetches can be generated automatically as well as through compiler directives.

% f90 -xprefetch=auto

will let the compiler insert prefetch instruction into the generated instructions. In
many cases, turning on the automatic prefetch improves code performance noticea-
bly. But for a certain functions or routines, automatic prefetch may even degrade the
performance. In such cases, it is possible to specifically control the location, variable
or stride of the prefetch instruction. Compiler option for this case is

% f90 -xprefetch=explicit

Inside the source, it takes a pragma statement to specify the explicit prefetch as:

do i n=lbnd,ubnd
c$pragma sparc_prefetch_read_many (src(1,n-k+2))
c$pragma sparc_prefetch_write_many(dst(n+1,1))

dst(n,1)=src(1,n-k)
...
enddo

A right mix of these two kind of prefetch instruction has been applied. For that pur-
pose, function profile and source annotation, as well as the disassembly listing from
the collector/analyzer experiments was used to compare the timing difference before
and after the application of prefetches.

2.3. Inlined Math Function
The function profile revealed that sign(.) function took an unnecessary por-

tion of time. It was also found that the function inside a computationally expensive
loop prevents the instruction scheduler from properly scheduling the loop. A fix was
made to the math library, and a patched version of libmil.so library (inlined math li-
brary) proved to be improving the performance.

2.4 Performance Optimization Results
With above optimization aggregated, the resulting improvement was 1.8X on

a UltraSPARC III+ CPU. Table 1. shows the results. The application was a metal
stamping problem. The source code tuning including loop splitting and addition of
prefetch pragma have been implemented into the source code of release 970.3280.
Although the tuning for the current problem was measured with a specific stamping
case, other similar stamping problems will probably benefit from the tuning. For
other types of problems such as crash or drop test, same techniques will be used for
tuning.

Splitting the loop manually within the source can be quite labor intensive. It
also will make a code maintenance somewhat cumbersome. For this, compiler initi-
ated automatic loop splitting, or loop distribution, is being pursued simultaneously.

4th European LS-DYNA Users Conference MPP / Linux Cluster / Hardware I

K – I - 39

 No. of shell elements 42,000

 Hardware SunBlade 2000 900MHz US-III+
 2GB Memory

 Reference Binary ls960.1488

 Tuned Binary ls970.2630

 Reference Elapsed time 2981 second, 1.0

 Tuned Elapsed time 1633 second, 1.83X

Table 1. An example performance improvement of LS-DYNA-SMP.

3. MPI Performance Improvement
The performance measurement tools and techniques of section 1 will benefit

both SMP and MPP executables. Loop-splitting and prefetch tuning achieved for
SMP binary will also improve the performance of MPI binary. In addition to this, it
is also possible to set environment variables that affect the MPI jobs. The latest
release of HPC ClusterTools (Release 5) [6] provides a useful tool called mpprof
that generates a birds-eye view of the performance of an MPI job.

3.1. HPC ClusterTools 5: mpprof
Based on the performance tuning methods described above, LS-DYNA-MPP

binary has been tuned. Along with profile-based tuning, MPI application tuning is fa-
cilitated with HPC cluster development stack built around ClusterTools. The latest
release of ClusterTools 5 has an additional tool called mpprof. Mpprof gives over-
view of an MPI process. The tool starts with saving index files from an MPI job by
setting

% setenv MPI_PROFILE 1
% mprun -np $np mpp940 i=$data
% unsetenv MPI_PROFILE

It creates an index file named mpprof.index.cre.<jid> where <jid> is a job id set by
the cluster runtime environment. Then mpprof is launched by

% mpprof mpprof.index.cre.<jid>

The output of mpprof consists of suggestions on MPI environment variables
for better MPI communication performance. Usually those suggestions involve
MPI_SPIN, MPI_POLLALL, MPI_PROCBIND and many of shared memory related
ones such as MPI_SHM_CYCLESTART when running on the SPARC cluster
nodes.

3.2. Scalability results
Based on the aggregate of tuning techniques described above, a tuned MPP

binary was generated and a customer benchmark was run for Mefos, Metallurgical
Research Institute, AB [7]. The job was run on a cluster environment consisted of
SunFire V480 (4-processor) [8] and V880 (8-processor) servers [9], linked with Myri-
net interconnect. The new binary showed an excellent scalability of greater than
80% efficiency at processor counts bigger than 100 and node count of 32 (for V480).
Table 2. shows the summary of results and achieved scalability.

MPP / Linux Cluster / Hardware I 4th European LS-DYNA Users Conference

K – I - 40

V880 cluster that consisted of 8 nodes of 8-processor servers showed simi-
lar scalability. It scaled up to the full 64-processors running the same problem at
1227 seconds, which is a remarkably close number compared to the cluster of 4-
processor nodes.

SunFire V480 Cluster

 Hardware

32 x SunFire V480
4 x UltraSPARC III+ @900MHz/8MB/150MHz
16 GB memory
 1 M3F-PCI64C-2 Myrinet card (optical fibre)
NFS server for Storage: SF V880 with 4 x T3's (9x36G)
a shared UNIX file system through a private 1000BT network

 Software

Solaris 8
HPC ClusterTools 4.0
Sun ONE Studio 7, Compiler Collection
Myrinet driver for HPC CT 4.0:
 gm-1.6.4_rc0-sun4u-SunOS-5.8-8port
LS-DYNA: mpp970.2779 with MPI environment settings of
 export MPI_SHM_SBPOOLSIZE=8388608
 export MPI_SHM_NUMPOSTBOX=256
 export MPI_PROCBIND=1

 Problem 1.2M nodal points, 600K brick elements.
Sheet metal rolling.

Table 2. Specification of SunFire 480 cluster.

NCPU Elapsed Time
(second)

Scaling Efficiency
(%)

Best Config
(Nodes x CPU)

1 71790 1.00 100.0 1 x 1

2 36194 1.98 99.2 2 x 1

4 20419 3.52 87.9 2 x 2

8 10282 6.98 87.3 8 x 1

12 6077 11.8 98.4 12 x 1

16 5144 14.0 87.2 8 x 2

24 3356 21.4 89.1 12 x 2

32 2547 28.2 88.1 16 x 2

48 1650 43.5 90.6 16 x 3

64 1278 56.2 87.8 32 x 2

72 1154 62.2 86.4 24 x 3

96 889 80.8 84.1 32 x 3

128 753 95.3 74.5 32 x 4

Table 3. Scalability of a Sun Fire V480 cluster.

4th European LS-DYNA Users Conference MPP / Linux Cluster / Hardware I

K – I - 41

4. Summary and Conclusions
With the developments in the performance tools, Solaris development envi-

ronment still benefits the continuous hardware performance improvements in
UltraSPARC processor lines. Recently introduced entry level multi-processor serv-
ers perform well in a clustered environment running LS-DYNA-MPP executables.
Also a portal environment that incorporates Sun ONE Grid Engine[10] will serve as
an efficient computation platform as demonstrated in a previous report[11] of Techni-
cal Compute Portal.

5. Acknowledgment
The following people are acknowledge for their contributions:
The multiplexed performance counter tool is from Darryl Gove of Sun Micro-

systems.
The Mefos benchmark results were due to Eduardo Pavon, Jonas Edberg,

Brian Whitney, Hugh Caffey, Borje Lindh, and Phil Pincus of Sun Microsystems.

6. References

1. Man pages of cpustat, cputrack: % man -s 1M cpustat
man -s 1 cputrack

2. Man pages of cpc : % man -s 3cpc cpc

3. SPARC V9 JPS1 Implementation Supplement: Sun UltraSPARC-III, Sun Micro-
systems, 2000.

4. Sun ONE Studio website:http://wwws.sun.com/software/sundev/solde/index.html

5. Man page of ppgsz : % man ppgsz

6. HPC Cluster Tools website: http://www.sun.com/servers/hpc/software/

7. Metallurgical Research Institute, AB: http://www.mefos.se/

8. Sun Fire V480 Server: http://www.sun.com/servers/entry/v480/index.html

9. Sun Fire V880 Server: http://www.sun.com/servers/entry/880/index.html

10. Sun Grid Engine: http://wwws.sun.com/software/gridware/

11. Dan Fraser, Youn-Seo Roh, and Henry Fong, “Web-Centric LS-DYNA – devel-
opment of a Technical Computing Portal”, 7th International LS-DYNA Users
Conference, 2002.

* Sun, Sun Microsystems, Solaris, Sun Fire, Sun ONE, Sun HPC ClusterTools
are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

* SPARC, UltraSPARC are registered trademark of SPARC International, Inc. in
the United States and other countries.

MPP / Linux Cluster / Hardware I 4th European LS-DYNA Users Conference

K – I - 42

