Finite Element Models for European Testing: Side Impact Barrier to WG13 Pedestrian Impactors to WG17

Trevor Dutton, Arup Solihull, UK

Tel +44 121 213 3342 Email trevor.dutton@arup.com

Side Impact Barrier to WG13

EEVC WG13 Revised Side Impact Barrier Specification - key points

- Revised Specification to improve consistency, repeatability and reproducibility
- Dynamic corridors unchanged
- Each block is a single continuous piece of honeycomb with progressively modified crush properties (multi-block or tapered honeycomb, foams, etc. no longer to be used)
- Higher spec glue & cladding properties to prevent failure
- Addition of a ventilation device

WG13 - Evaluation Tests

Three tests used for evaluation:

- Flat rigid load cell wall (35 km/h)
- Rigid sill (35 km/h)
- Offset pole (20 km/h)
- Results of these tests were used to validate the new LS-DYNA model

LS-DYNA Model Description

- Model uses blocks of 2x2 solid elements linked by type 6 beams to allow piercing - this method has been used successfully in other barriers for a number of years
- Total Barrier Mass: 0.950t
- Total Number of Elements: 72738
- Deformable Elements: 70790
- Rigid Elements: 1948
- Time Step: 1.02E-6 s

Component	Model	UTAC Target
Complete Barrier	44.94 kJ	45 ±5 kJ
Block 1	9.40 kJ	9.5 ±2 kJ
Block 2	15.15 kJ	15 ±2 kJ
Block 3	9.40 kJ	9.5 ±2 kJ
Block 4	3.86 kJ	4 ±1 kJ
Block 5	3.45 kJ	3.5 ±1 kJ
Block 6	3.45 kJ	3.5 ±1 kJ
Maximum Deformation	340 mm	$330 \pm 20 \text{ mm}$

Model Calibration - Rigid Wall (1)

Model Calibration - Rigid Wall (2)

Model Calibration - Rigid Wall (3)

Block 2

Model Calibration - Rigid Wall (4)

Blocks 5 & 6

Block 4

Model Calibration - Sill Test

Pedestrian Impactors to WG17

WG17 Pedestrian Protection

- Reviewed WG10 proposals (1994) and proposed a number of adjustments
- Impactor designs and calibration have been modified, final details agreed in 2002
- EuroNCAP has adopted WG17 methods
- ACEA Part A proposals to apply from July 2005

Sub-system Impactor Concept

Shear Spring

Ligament

Damper

Dynamic Impactor Test Tests all 3 injury criteria: ٠ 1. Tibia acceleration Impactor: rigid, 2. Shear linearly guided 9kg 7.46m/s 3. Knee bend Contact friction: 0.1 TRL said their impactor is "smooth". 31.999502 **Dynamic Impactor Test** VON_MISES_STRESS (Max all pts) 0.00 Max accel & 30.00 shear occurs at ~6ms 60.00 90.00 120.00 150.00 180.00 210.00 240.00 270.00 300.00 Force to generate shear

1. 2. is dependent on: Force into tibia

Mass of femur

WG17 Calibration – Dynamic Results

Upper Legform - Basic Construction

Dynamic Impactor Test

Dynamic Impactor Test - Load Cell Force

Dynamic Impactor Test - Moments

Headform Models - Basic Description

Rigid Plate Drop Tests (WG17 models only)

Rigid Plate Drop Test Matrix

- 16 cases: 8 adult, 8 child
- 2 each @ 90deg hi velocity, lo velocity
- 3 each @ 30deg hi velocity, lo velocity, on paper
- 3 each @ 45deg hi velocity, lo velocity, on paper

