Current and future developments of LS-DYNA II

Dr. Hallquist J. O., Livermore Software Technology Corp.

LS-DYNA User's Meeting 4th European LS-DYNA Conference

Implicit development

- The combined solver for explicit and implicit applications focuses the entire development efforts on one comprehensive analysis code.
 - Large cost savings relative to developing separate implicit and explicit solvers that couple.
 - The stiffness matrix calculation is the main difference between implicit and explicit
 - · Implicit MPP uses the explicit domain decomposition
 - A second domain decomposition is needed by the equation solver.
 - All developers work on explicit and implicit methodology
 - QA is performed on one code.

Current implicit capabilities

- Statics and dynamics with Newmark- β time integration
- Eigenvalues
- Linear buckling
- Newton, quasi-Newton and Arc-Length iteration schemes-line searches + rank one or two stiffness updates
 - BFGS (Default)
 - Broyden's first method
 - Davidon
 - DFP
- Contact, all types
- Constraints

Implicit rigidwalls

- The penalty method has now been implemented for all rigid walls options to support the implicit solver. (The penalty method can optionally be used for explicit calculations.)
 - RIGIDWALL_GEOMETRIC_FLAT
 - RIGIDWALL_GEOMETRIC_PRISM
 - RIGIDWALL_GEOMETRIC_CYLINDER
 - RIGIDWALL_GEOMETRIC_SPHERE
 - RIGIDWALL_PLANAR
 - RIGIDWALL_PLANAR _ORTHO
 - RIGIDWALL_PLANAR _FINITE
 - RIGIDWALL_PLANAR _MOVING
 - RIGIDWALL_PLANAR _FORCES

Combined implicit-explicit

- · Dependable spring back for sheet metal stamping
- · Initialization of static loads prior to transient calculations
- A reliable linear capability to automatically solve for normal modes, attachment modes, and constraint modes

 To include infinitesimal motions superimposed on rigid bodies
- Check the rigid body modes in the crash models by running an eigenvalue problem
 - To identify inadvertent constraints or missing constraints

Combined implicit-explicit

- Perform nonlinear, seamless, spring back simulations on a vehicle after a crash simulation
 - To provide reliable measurements between numerical and physical results can be more easily obtained
- Generate superelements to use as boundary conditions for transient dynamics.
- Automatically switch between running implicitly and explicitly
- · Mix implicit and explicit in the same analysis
 - Run parts of the model which control the time step, such as the steering well meshed with solid elements, implicitly.

Sparse linear equation solvers

- Distributed Multifrontal
 - LS-DYNA unique distributed memory solver
 - Now 2 domain decompositions, one for solver and one for elements.
- BCSLIB-EXT, Boeing's Solver
 - Software Package used throughout the FEA world.
 - SMP
 - Has extensive capabilities for solving very large problems by using disk to overcome memory limits
- Block Shift and Invert Lanczos eigensolver from BCSLIB-EXT
 - LSTC is developing the distributed memory version for release in 2003

Singularity controls for implicit

- Due to the unconstrained rotational degrees-of-freedom normal to the shell surface in the large deformation shell theories, singularity control is needed to obtain implicit solutions
- We have 3 ways to control matrix singularities in implicit problems:
 - Add a drilling stiffness matrix
 - Include 6 degrees-of-freedom per node (Costly for nonlinear)
 - Automatically scan the assembled stiffness matrix searching for rank deficient sets of columns

Implicit constraints

- Requires a matrix assembly and constraint application package
 - Significantly speeds up development of implicit solver since it allows us to
 - · Quickly add explicit constraints to implicit solver
 - · Efficiently apply constraints throughout the solution process.
 - · Correctly apply complicated chains of constraints
 - Dependent nodes in one constraint can be independent nodes in another. (implicit only)
 - Four rigid bar linkage
- Explicit joints are treated by penalties. Implicit joints are ٠ treated *exactly* using constraint equations.

Explicit constraints for implicit

- BOUNDARY_
- BOUNDARY_
 CYCLIC
 NON_REFLECTING
 NON_REFLECTING_2D
 PRESCRIBED_MOTION (all options)
 SLIDING_PLANE
 SPC (global and local)
 SYMMETRY_FAILURE
 ELEMENT_BEAM end release conditions
 MAT_RIGID global and local SPC
 EXTRA_NODES
 EXTRA_NODES
 GENERALIZED_WELD
 GLOBAL
 INTERPOLATION
 JOINTS (all options)
 LINEAR CONSTRAINTS
 NODAL_RIGID_BODY
 NODE_SET
 POINTS
 RIGID_BODIES
 RIVET
 SHELL_TO_SOLID
 SPOTWELD
 TIE-BREAK
 JOINT_DISCRETE_BEAM

- CONSTRAINED
 - ADAPTIVITY
 - EXTRA_NODES

Implicit joints

- Joint types for implicit with constraint equations.
 - spherical
 - revolute
 - cylindrical
 - planar
 - universal
 - translational
 - locking
 - translational_motor
 - rotational_motor
 - gears
 - rack_and_pinion
 - constant_velocity
 - pulley
 - screw

Chained rigid bodies

Example of 11 rigid spheres and 1 rigid beam that are joined together by spherical joints, which are represented by constraint equations, *(no penalties)* to form a bracelet, i.e., a closed chain. Null stiffness matrix, i.e., all eigenvalues are zero!

Implicit constraints for explicit

It is very difficult to use a NASTRAN file in an explicit run. Note that the constraints reduce the number of degrees-of-freedom:

$$M\ddot{u}_{f} + Ku_{f} = F$$

$$u_{f} = Tu_{r}$$

$$T'MT\ddot{u}_{r} + T'KTu_{r} = T'F$$

$$M_{r}\ddot{u}_{r} + K_{r}u_{r} = F_{r}$$

• But the mass matrix, *M_r*, is no longer diagonal. Sparse equation solvers must be used to invert the mass matrix hurting efficiency.

Static initialization of tire

- Use static implicit analysis to initialize tire
 - Mount tire on wheel
 - · one wheel-half rigid
 - · one wheel-half deformable, prescribed motion to squeeze bead
 - · deformable-to-rigid switch after mounting, merge into one RB
 - Inflate tire
 - apply internal pressure
 - Apply vehicle weight
 - problem: no contact -> rigid body mode is present
 - · prescribe motion of road surface to establish contact
 - · use death time to kill prescribed motion constraint
 - · apply vehicle weight
- Switch to explicit analysis for rolling impact, etc...

4th European LS-DYNA Users Conference

Automated mode generation

- *PART_MODES is the keyword to include flexibility in rigid bodies. Currently implemented for penalty joint constraint method.
- Input can now be generated by LS-DYNA. Required:
 - Normal modes
 - Constraint and attachment modes
 - Optional list of attachment nodes
 - Modal damping coefficients

Automated mode generation

- New keyword, *CONTROL_IMPLICIT_MODES, reads nodal sets for constraint and attachment modes and then generates these mode sets automatically
- LS-DYNA modifies the constraint/attachment modes to ensure that they are orthogonal to the normal modes.
- Potential Applications
 - $-\,$ NVH, durability, and crash simulations

Shell elements for implicit

Nonlinear shells

- Belytschko-Tsay with warping stiffness [2]
- Belytschko-Wong-Chang [10]
- C0 triangle [3]
- Hughes-Liu [6]
- Assumed Strain [16]
- DKT Triangle [17]

Linear shells

- Discrete Kirchhoff with 6 dof/node (R.L. Taylor) [18]
- Quadrilateral shell with 6 dof/node (E.L. Wilson) [20]
- Triangular shell with 6 dof/node (E.L. Wilson) [auto sorting]
- Quadrilateral plate with 5 dof/node (E.L. Wilson), with Pian-Sumihara membrane [21]

Eigenvalue comparisons

NASTRAN input file

- · Component with approximately 60,000 equations
- · Spotwelds use brick elements with RBE3 constraints
 - 2022 RBE3's (*CONSTRAINED_INTERPOLATION)
 - 12 RBE2's(*CONSTRAINED_NODAL_RIGID_BODY)
- Eigenvalue solution for free-free modes
 - 6 rigid body modes
- Solved eigenvalue problem with types 18 and 20 linear elements and types 6 and 16 nonlinear elements
 - Shell elements types 18 and 20 were within 2% of NASTRAN, CQUAD4, eigenvalues—some slightly smaller others larger, but generally larger.

Eigenvalue comparisons

- O Nastran
- X Type 6
- Type 16
- Type 18
- Type 20

Door sag - explicit

- Door sag test is essentially applying a downward load/unload while monitoring the permanent set
- Explicit shows higher vertical displacement while loading coupled with oscillations after unloading making
- It difficult to determine the true springback
- Implicit shows a more accurate maximum vertical displacement and true springback
- This model has contact at the hinge area and in some BIW locations
- Loading in explicit was done over 0-200 ms and unloading over 200-400ms.
- Loading in Implicit was done over 0-1sec and unloading over 1-2 sec

Door sag - explicit

Door sag - implicit

Door check

- Door check test is applying a load to simulate the over-opening of the door while monitoring the z-displacement
- Explicit run does not reach equilibrium (at least when run from 0-100ms and unloading over 100-200 ms). Consequently, solving this problem explicitly is impractical
- Implicit shows a more accurate maximum vertical displacement and true springback
- This model has contact at the hinge area and in some BIW locations
- Loading in Implicit was done over 0-1sec and unloading over 1-2 sec

Test problem - dry ship

- Loading Simulates Mine Attack
 - pressure spike applied to forward hull section
 - simulate response at isolation deck for one second

Test problem - dry ship

• Ship response (5x displacement scale factor)

naa displacement factor-5

Test problem - full ship

• Velocity response at isolation deck

Example - dry ship

• Timing data (IBM B80, one CPU)

method	CPU seconds
explicit, shell type 2	36,586
explicit, shell type 16	129,049
modal, 120 constraint modes	430
compute 120 constraint modes	84

~300 Times Faster!

Eigenvalue extraction

- Frequencies and Mode Shapes Change During Simulation
 - tensile stress increases natural frequency (guitar string)
 - contact with obstacles changes mode shapes
- LS-DYNA Can Extract Eigenvalues During Transient Analysis
 - curve gives time to extract eigenvalues, how many to extract
 - implicit or explicit transient analysis
 - new database family for each set of eigenvalues

Eigenvalue extraction

• Simple Input Parameters

- *CONTROL_IMPLICIT_GENERAL

- IMFLAG = 1: implicit with intermittent eigenvalues
- IMFLAG = 6: explicit with intermittent eigenvalues

- *CONTROL_IMPLICIT_EIGENVALUE

• NEIGV = -(curve ID) on

Tensile strip with indentor

Transient Analysis: stretch, then indent

Tensile strip with indentor

Eigenvalues after each loading phase

FEM/mesh-free

A Lagrangian Galerkin method Less mesh distortion problems Currently applies to solids

Basic features

- No conforming problems across the coupled boundaries
- Passes patch test
- Multiple FEM/Mesh-free and Mesh-free/Mesh-free coupling
- · Applicable for essential and natural boundary conditions
- · Available for most types of contact
- Available for most material models including incompressible, foam and damage materials
- CPU cost is 4~5 times expensive than FEM for 3D explicit version

EFG applications

- Any nonlinear large deformation stress analysis problem involving large distortions
 - Crushable barriers
 - Hyperelastic foams
 - Forming problems
 - Forging
 - Extrusion

Problem definition

Cold rolling simulation

Cold rolling simulation

Bulk forming simulation

Bulk forming simulation

Bar impact simulation

BAR IMPACT Time = 0

ź_x

Bar impact simulation

Form material simulation-fem

Form material simulation-efg

FAST ODB BARRIER Time = 0

Extrusion simulation

Frictional forging simulation

Future plans for efg

<u>2002</u>

2D/3D solid formulation will available in the coming LS970

2004

Implicit version will be available Start to implement MPP version

2005 Coupled FEM/Mesh-free shell formulation will be available

<u>Others</u> Adaptivity Fluid and Gas formulations

Massively parallel processing

The porting of LS-DYNA to MPP architectures started in 1992 and is ongoing.

MPP machines have replaced vector supercomputers at customer sites in the U.S., Japan, and Europe

There is now a significant demand for the MPI implementation

MPP machines offer the fast turnaround time -- 98% of crash jobs will finish overnight on 8-32 processors

LS-DYNA was the fastest Lagrangian code in a benchmark with DOE ASCI codes on the LLNL ASCI computers

Massively parallel processing

Recent Development:

- · LS-DYNA is available under Windows
 - Commercial version of MPI provides better scaling on several test examples
 - 2 dual processor PCs (1.4 GHz AMD)
 - 100 mbit switched ethernet
 - Speed-up about 3 on public domain MPI and 3.8 on commercial version of MPI
 - Excellent performance, equivalent to Linux and Unix

Network performance on mpp

- Algorithmic Overhead
 - Independent of the system
 - Can be minimized through careful software design
 - Increases moderately with number of processors
- Load Imbalance (improvements made in 970)
 - Elemental calculations
 - Contact calculations
 - Constraints and other items
- Communication Overhead
 - Hardware and system dependent
 - Can increase substantially with number of processors

Outlook

LS-DYNA developments are leading to the ultimate goal of including within one explicit finite element program capabilities to seamlessly solve problems that include:

- Multi-Physics

and require:

- Multiple-Stages

with

- Multi-Processing
- to reduce run times.

LS-PREPOST Features

- Full LS-DYNA 970 keyword support
- Subsystem concept is introduced for include files and imported model
- Extensive mesh manipulation features
- · Metal forming related features
- · Occupant positioning improved capabilities
- Airbag Folding
- 201 Head impact positioning
- SPH element generation

LS-PREPOST – Keyword input

- Each keyword has its own form for input and editing
- Keyword data that is present in the model will be highlighted with red color
- There are over 800 keyword entities
- Comment card is available for each keyword input

	*Damping	*Load			
*Airbag	*Dbase	*Mat			
*Ale	*Define	*Node			
*Boundry	*Element	*Part			
*Cnstrnd	*Eos	*Rgdwal			
*Compnt	*Hrglass	*Section			
*Contact	*Initial	*Set			
*Control	*Intgrtn	*Termnt			
*Def2Rgd	*Intrfac	*User			
1 2 3	4 5	6 7 D			

Keyword Input Form

- Keyword input forms match LS-DYNA manual
- · Each data field is identified by its name
- An explanation of the field is shown with a simple click in the field or the field name
- Simple selection button is used for the data field with predefined values
- A popup table can be used as an aid to transfer data to the selected field
- · Link data can be viewed with a click on the name

Plenary Session II

File Misc	e. Togg	le Backg	-				KEY	WORD IN	PUT			
Hybrid	i III 501	h% Rig	Ĩ									Done
					*MA1	[_RIGID_(T	ITLE) (79)			(Subsy	s: 1 rh3_50.inf) [Setting
				TITLE								
			1	MID	RO		PR		COUPLE	S M	ALIAS	
				<u>17</u>	2.300e-06	10.00000	0.31000	0.0	0 =	0.0	Ĭ	
			2	СМО	CON1	CON2						
				0.0 =	0.0	0.0						
			3	LCO OR A1	A2	A3	V1	V2	V3			
				in n	100	100	120	ممتا				
			E E ai	Q.A1: Compo pag sensor s	eq.LCO: Loc nent of vecto subroutines.	r a which is	fixed in the ri	gid body wh	ich are us	ed for out	put and the user	defined
KEYWORD INPUT												
NewID		lld Dra	w		Pi	ick Ad	d Accept	Del/UnD	Default		1 2	ľ
	*PART (98) (Subsys: 1 rh3_50.inf) Setting 3											
1 TITLE												
PSOL	PSOLD : 1 CHEXA SPINEWGT											
2 PID		SECID	N	1ID E	OSID	IGID	GRAV	ADPOPT	TMID		11 12	
]17		17 <u>í</u>		∣7 <u>í</u> . 0]			0 🗖	0 🗖			14	
										_	15	
EOSID :-Equation of state ID defined in the "EOS section. Nonzero only for solid elements using an equation 1718												
of state to	of state to compute pressure.											
-											21	

LS-PREPOST - Subsystem

- The subsystem concept gives user better control over the a model with many imported files
- A subsystem can consist of any keyword data
- Each include file will be treated as one subsystem
- All subsystems can be output as one single files or individual files
- A subsystem can be deleted

Model Manipulation

- A whole or portion of the model can be translated, rotated, scaled, transformed, reflected or projected
- New elements can also be created with each of these operations
- Shell element/segment normal check and reverse, auto reverse with seed element
- · Move or copy elements from one part to another part
- Extensive element quality check
 - Feature angle, Warping, Aspect ratio, Characteristic length ,Internal angles

Model Manipulation

- Duplicated grid elimination (grids have the same coordinates)
- Free edges detection
- Element deletion and creation (mesh cleaning)
- Nodes deletion ,creation, replacement and alignment
- Element splitting

LS-DYNA data creation

- Set data (Beam, Shell, Node, Part, Segment, Discrete, etc.) BeltFit
- Part data
- Mass element
- Nodal SPC data
- Initial Velocity
- Constrained Nodal Rigid Body
- · Spot weld data
- · General weld data
- Rigid walls

ABFold	DmyPos	BeltFit				
HIP201						
XSect	Vector					
IniVel	Accels	DBHist				
SpWeld	Spc	Wall				
Box	Rivet	GWeld				
Coord	Constn	CNRB				
SetD	PartD	MassD				
1 2 3 4 5 6 7 E						

Airbag folding

- The Airbag folding menu is designed to make airbag folding simple and straight forward.
- The folding procedure leads to a list of fold instructions which can be saved and reloaded later.
- Thin, Thick, Tuck and Spiral Fold can be defined.
- Folds can be examined via the Section Plane menu for good shape and freedom from nodal intrusions.
- Whole folding procedure can be stepped through and animated

Occupant Positioning

- Multiple dummies can be imported into one single model
- Move a dummy in a model to the desired location
- Use a tree file to define joints and limbs
- · Rotate limbs of the dummies about their joints
- All related keyword data will be transformed
- Manipulation of the dummy model is now recorded and can be reset to its original position
- Final positioning can be saved as a LS-DYNA keyword input deck

Metal forming related features

- Creation of new parts by offsetting elements along the element normal direction
- Separation measure between parts can be displayed as fringe plot
- Part travel distance to another part before contact can be calculated
- Multiple section cuts for different states or locations

201 Head Impact Positioning

- Multiple head can be position in the same model
- Head can be tilted vertically or rotated horizontally interactively
- Configuration file can be setup to have head model loaded automatically
- Multiple LS-DYNA keyword file can be output for different head positions

SPH Element Generation

- SPH elements can be generated in simple geometries such as boxes, spheres and cylinders
- Material models for SPH can be automatically setup or can be picked by the users

Conclusions

- LSTC is committed to develop the pre- and postprocessing capabilities for LS-DYNA
- LS-PREPOST beta release is available for download from <u>ftp.lstc.com</u> in the directory outgoing/lsprepost
- LS-PREPOST version 1.0 will be release in March, 2003
- New functionalities and enhancements will be released periodically
- Users are encouraged to give suggestions and provide ideas for the development