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MOTIVATION OF THE MODEL

• Composite materials have high energy absorption 
capability in impact and therefore they can be used 
as crashworthiness materials in vehicle structures 
or even as armors to protect some parts.

• Crash and impact experiments for structure 
survivability estimation are very expensive 
compared to the computer impact simulations, 
using finite element code for dynamic problems 
with explicit time integration.
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STATE OF THE PROBLEM

• Woven fabric composites have complex structure and 
sophisticated micro-mechanical models are necessary to 
predict their elastic properties in all directions 

• They render different nonlinear behavior in the different 
loading directions

• The material nonlinearity of the matrix is combined with 
the scissoring effect of the fiber reorientation 

• Failure analysis and the failure modeling are is still being 
investigated because of the complex structure and the 
complex interaction of the components 
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STATE OF THE PROBLEM 
(Continued)

• Most of the successful micro-mechanical material models 
of woven fabric composites have high discretization of
their Representative Unit Volume which leads to high 
computational costs

• Contrary, FE impact simulations need computationally 
efficient material models because of the repeated 
calculations of the model at each inherent small time step 
of the simulation
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GOALS OF THE MODEL 
DEVELOPMENT

• Development of woven fabric composite material model 
based on micro-mechanical approach and Representative 
Volume Cell (RVC) approach

• The RVC has to represent the pattern of the deformed 
composite material in order to account for fiber 
reorientation

• Geometrical nonlinearity due to fiber reorientation and 
material nonlinearity due to the matrix material shear have 
to be included

• Adequate and efficient failure model based on micro-
mechanical failure criteria

• Computationally efficient model with simplified geometry 
in order to avoid high discretization of the RVC
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MICRO-MECANICAL MODEL
Representative
 Volume Cell

Fig. 1. Woven composite 
interlacing pattern.
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Fig. 2. Micro-mechanical model of RVC. 
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MICRO-MECANICAL MODEL 
(Continued)
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Discount factors are used to degrade the material stiffness 

The stiffness matrix of the yarn has to obey the ratio 
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MICRO-MECANICAL MODEL 
(Continued)
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MICRO-MECANICAL MODEL 
(Continued)
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Fig. 3. I level homogenization 
model.
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Two levels of elastic property homogenization: 
I. Homogenization of yarn and matrix materials to obtain 

the stiffness of the sub-cell.
II. Homogenization of sub-cells to obtain the stiffness of RVC.

The contracted notation accepted here is 
1 ≅ 11, 2 ≅ 22, 3 ≅ 33, 4 ≅ 12, 5 ≅ 23, 6 ≅ 31

Iso-strain and iso-stress boundary 
conditions at the I-st level of 
homogenization
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MICRO-MECANICAL MODEL 
(Continued)
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Iso-strain and iso-stress boundary conditions at the II-nd level of 
homogenization

Sub-cell stiffness transformation

The transformation matrix
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HOMOGENIZATION PROCEDURE
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Strain and stress vectors as well as stiffness matrices of constituents are 
partitioned into iso-strain and iso-stress components.

The constitutive equations for constituents can be written

The effective strain and stress are volumetric average of the constituents
strain and stress, respectively. The effective stiffness matrix is the 
ultimate aim.

Partitioning the effective stiffness matrix, the constitutive equations can 
be written
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HOMOGENIZATION PROCEDURE
(Continued)
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HOMOGENIZATION PROCEDURE
(Continued)

As a generalization of the homogenization procedure, it can 
be stipulated in three steps:

• Choosing iso-strain and iso-stress components and 
partitioning the constituent stiffness matrices

• Calculating the interim matrices denoted by star-
superscript

• Calculating the partitions of the effective stiffness matrix
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The effective stiffness matrix finally is obtained
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FIBER REORIENTATION
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Unit directional fiber vectors are formulated for fill and warp yarns

They are rotated by the deformation gradient tensor and then normalized
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Now, the updated orientation angles of the yarns are obtained
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MATERIAL NONLINEARITY
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Material nonlinearity is described 
by the Romberg-Osgood equation

The tangential shear modulus can 
be determined as a function of the 
shear stress instead of the shear 
strain
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The material nonlinearity can be 
introduced as a discount factor of 
shear moduli
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FAILURE MODEL
Discount coefficientsFailure

mode
Failure

condition d2 d3 df4 df5 df6

Longitudinal
tension

t
y

t Xc >σ1
fiber breakage - ultimate failure

Longitudinal compression
c

y
c Xc >σ− 1

fiber breakage - ultimate failure

Transverse tension,
2-direction

t
y Y>σ2

0.01 1.00 0.20 1.00 0.20

Transverse compression, 2-
direction

c
y Y>σ− 2

0.01 1.00 0.20 1.00 0.20

Transverse tension, 
3-direction

t
y Y>σ3

1.00 0.01 0.20 1.00 0.20

Transverse compression, 3-
direction

c
y Y>σ− 3 1.00 0.01 0.20 1.00 0.20

Longitudinal shear, 
12-plane

l
y S>σ4

0.01 1.00 0.01 1.00 1.00

Transverse shear, 
23-plane

t
y S>σ5

0.01 0.01 0.01 0.01 0.01

Longitudinal shear, 
31-plane

l
y S>σ6

1.00 0.01 1.00 1.00 0.01
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FAILURE MODEL 
(Continued)

For the matrix material, the maximal principle stress is the failure criterion

m
m
III

m
II

m
I X>σσσ },,max{ 20.0,01.0 == fGE ddIf then

The minimum of the discount factors from material 
nonlinearity and from failure model is used for shear moduli
stiffness matrix degradation:

},min{ fGsGG ddd =For matrix material stiffness matrix

},min{,},min{,},min{ 666555444 fsfsfs ddddddddd ===
For yarn material stiffness matrix

The total strain of the RVC is accumulated at each time step. If the
maximal principle strain or the maximal shear strain of the RVC exceeds
the ultimate strain for the integrity, Eu, a ultimate failure is accounted for 
the material model. 
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NUMERICAL EXAMPLES
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The Graphite/Epoxy material AS4/3501-6 with properties described 
by Blackketter et. al. is used for validation.

Fig. 5. 0/90 deg. tension. Fig. 6. 0/90 deg. shear.
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NUMERICAL EXAMPLES 
(Continued)
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The Graphite/Epoxy IM7/8551 7A 5-harness satin material with 
properties described by Karayaka and Kurath

Fig. 7. 0/90 deg. tension. Fig. 8. +45/-45 deg. tension.

Material I 4th European LS-DYNA Users Conference

D – I - 24



21

The University of Cincinnati

NUMERICAL EXAMPLES 
(Continued)
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Fig. 9. 0/90 deg. compression. Fig. 10. +45/-45 deg. compression.
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NUMERICAL EXAMPLES 
(Continued)
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Fig. 11. 0/90 deg. bending. Fig. 12. +45/-45 deg. bending.
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IMPACT SIMULATIONS
Impact penetration of 0.5 in bullet with 2000 m/s velocity into 
Eglass/epoxy composite armor.

Fig. 13. Impact penetration, Johnson-Cook material model and user
defined woven fabric material model with eroding contact.

24

The University of Cincinnati

IMPACT SIMULATIONS 
(Continued)
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Flexible Woven Fabric
• The direction of the yarn in each sub-cell is determined by two angles – the

braid angle, θ, and the undulation angle of the yarn, which is different for the
fill and warp-yarns, βf and βw, respectively.

• The starting point for the homogenization of the material properties is the 
determination of the yarn stiffness matrices. The material of the yarn is 
assumed to be transversely isotropic
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• µ is a discount factor, which is a function of the braid 
angle, θ, and has value between µ0 and 1. Initially, in free 
stress state, the magnitude of the discount factor is very 
small (µ0 << 1) and the material has very small resistance 
to shear deformation.

• When locking occurs, the fabric yarns are packed and they 
behave like an elastic media. The discount factor is unity in 
this case and the fabric material resists the shear 
deformation with its real shear moduli.

• The discount factor, µ, is a function of the braid angle and 
it has to switch the model from trellis mechanism to elastic 
media and vise versa. A piece-wise function with two 
constants is chosen for the discount factor as follows:
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CONCLUSIONS

• The stress response of the developed micro-mechanical
material model of woven fabric composites is in good 
agreement with the experiments for various loadings.

• The model is implemented in LS-DYNA FE code as a user 
defined material model and it shows computational 
efficiency and a potential for large-scale simulations.

• The flexible fabric material model yield excellent 
prediction relative to experiments.

• The model is appropriate for FE impact simulations and for 
structure survivability estimation.
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