x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

EFFECTIVENESS OF COUNTERMEASURES IN RESPONSE TO FMVSS 201 UPPER INTERIOR HEAD IMPACT PROTECTION

Analysis and development of countermeasures in meeting vehicle upper interior free motion headform (FMH) impact safety requirement (FMVSS 201) has become an important aspect for engineers. FMVSS 201 safety regulation stipulates that the Head Injury Criterion, HIC (d) should be less than 1000 when a FMH is impacted at a speed of 15 mph. The interior components of a vehicle generally do not generate high HIC (d) numbers by themselves but the steel structures behind them to which they are attached do so. The gap between the interior component and the steel structure makes a provision for the introduction of some countermeasures which can absorb the kinetic energy of the FMH in the form of internal energy so that the acceleration response of the FMH does not generate high HIC (d) and Peak G force. This paper discusses a methodology in developing a countermeasure for automotive interior components to comply with FMVSS 201 requirements. The effectiveness of introducing a countermeasure between the headliner and the steel structure or the body in white (BIW) is evaluated through Finite Element Analysis using a dynamic finite element tool, LS-DYNA. Several geometric configurations of the countermeasure have been studied to ascertain its suitability in absorbing the kinetic energy of the FMH. Parametric studies have been carried out by varying the thickness of the countermeasure to see the effect on the injury parameters, HIC (d) and Peak G. Finite element analysis results are compared with the test results as per the FMVSS 201 regulations to deduce concrete conclusions about the effectiveness of the countermeasure.

application/pdf 18.pdf — 1.1 MB