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Summary: 
 
In an attempt to alleviate transverse shear locking in fully integrated hexahedra elements with poor 
aspect ratio, two new variants of solid element type 2 in LS-DYNA have been developed, implemented 
and tested on some critical problems. The approach is based on modifying the jacobian matrix in such 
a way that the spurious stiffness is reduced without affecting the true physical behavior of the element. 
The method is in a sense justified by means of a theoretical motivation, but above all indicated to be of 
practical use through some illustrating examples. The two new solid elements are denoted type 
(ELFORM) -1 and -2 on the *SECTION_SOLID card, where the latter is more rigorous but suffers from 
a higher computational expense, whereas solid element type -1 has an efficiency slightly worse than 
solid element type 2 for explicit analyses. However, all three element types are in that sense 
comparable for large scale implicit analyses.  
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1 Introduction 
The constant stress brick element in combination with a suitable hourglass formulation, see [1] and 
references therein, is usually the preferred choice for large scale numerical modelling of solid 
structures in industrial applications because of its efficiency and sufficient accuracy. With this strategy 
however there remains the delicate choice of hourglass formulation and optimal values of associated 
parameters in order to get reliable results. Furthermore, numerical simulation projects often involve 
several stages corresponding to different types of analyses. This may require manual intervention 
during the process such as switching element formulation in between stages due to difference in 
character of the different types of analyses. An impact analysis may for instance be preceeded by a 
static (gravitational) loading analysis and followed by an implicit springback analysis. Element 
formulations typically possess different stiffness properties, and this could make it difficult to validate 
the overall results in a consistent way. From an engineering point of view it is of interest to strive for a 
numerical modelling concept that is generically applicable and that minimizes these types of hands-on 
operations.  A modelling strategy in this direction would be to consequently use a fully integrated brick 
element in favour of the constant stress element, even though this means sacrificing numerical 
efficiency, but this is generally not recommended since this element is regarded too stiff in most 
situations. In particular this is the case when the elements exhibit poor aspect ratio, i.e., when one 
element dimension is significantly smaller than the other(s). This occurs for instance when modelling 
thin walled structures and the time for solving the problem prevents using a sufficient number of 
elements for maintaining close to cubic elements throughout the structure. The reason for the locking 
phenomenon is that the element is not able to represent pure bending modes without introducing 
transverse shear strains, and this may be bad enough to lock the element to a great extent. In an 
attempt to solve this transverse shear locking problem, two new fully integrated solid elements are 
introduced and documented herein that hopefully may become of practical use for these types of 
applications. The rest of the paper is organized as follows. In Section 2 the theory for the fully 
integrated brick element is given in order to illustrate the transverse shear locking anomaly in Section 
3. This is used as a base for formulating the theory of the new solid elements in Sections 4 and 6, for 
which the alleviation of the transverse shear stiffness is illustrated in Section 5. In Section 7 numerical 
examples are presented that show their practical usage and the paper ends with some concluding 
remarks in Section 8. 
 

2 Brief theory of fully integrated solid element type 2 

Let Iix  represent the nodal coordinate of dimension i  and node I , and likewise Iiv  its velocity. 
Furthermore denote 
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The isoparametric representation of the coordinates of a material point in the element is then given as 
(where the dependence on 321 ,, ξξξ  is suppressed for brevity) 

 IIii Nxx =  
and its associated jacobian matrix is 
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where )3,mod(1 jk +=  and )3,1mod(1 ++= jl , i.e., no sum over k  or l . For future reference let 
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be the jacobian evaluated in the element center and in the beginning of the simulation (i.e., at time 
zero). The velocity gradient computed directly from the shape functions and velocity components is 
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is the gradient-displacement matrix and represents the element except for the alleviation of volumetric 
locking. To do just that, let 
 )0,0,0(0

ijIkijIk BB = , 
i.e., the gradient-displacement matrix evaluated at the element center, and construct the gradient-
displacement matrix used for the element as 

 ijllIkllIkijIkijIk BBBB δ)(
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Figure 1 Illustration of bending of a parallelepiped 
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3 Transverse shear locking example 
 
To get the idea of the modifications needed to alleviate transverse shear locking, let’s look at a 
parallelepiped of dimensions 321 lll ×× . For this simple geometry the jacobian matrix is diagonal and 
the velocity gradient is expressed as (no sum over j ) 
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where, again, )3,mod(1 jk +=  and )3,1mod(1 ++= jl . Now let iqpi ≠≠≠ , then a pure 
bending mode in the plane with normal in direction q  and about axis p  is represented by (see 
Figure 1 for an illustration of this mode) 
 I
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and thus the velocity gradient is given as 
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for 3,2,1=j . The nonzero expression above amounts to 

 q
ii

i

lx
v

ξ2
=

∂
∂

 

 0=
∂
∂

p

i

x
v

 

 i
qq

i

lx
v

ξ2
=

∂
∂

. 

Notable here is that a pure bending mode gives arise to a (spurious) transverse shear strain 
represented by the last expression in the above. Assuming that ql  is small compared to il  it goes 
without saying that this term may dominate the internal energy and this is the source to what can be 
denoted transverse shear locking.  
 

4 Solid element type -2 
Given this insight the modifications in the expression of the jacobian matrix are as follows. Let 
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be the aspect ratio between dimensions m  and n  at time zero. The modified jacobian is written 
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The velocity gradient is now given as 

 IkijIkkjikij vBJJL ~~~ 1 == −  

where ijIkB~  is the gradient-displacement matrix for solid element type -2 in LS-DYNA. The same 
procedure described in Section 2 is used to prevent volumetric locking. 

5 Transverse shear locking example revisited 

Once again let’s look at the parallelepiped of dimensions 321 lll ×× . The jacobian matrix is still 
diagonal and the velocity gradient is with the new element formulation expressed as 
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where, again, )3,mod(1 jk +=  and )3,1mod(1 ++= jl . The velocity gradient for a pure bending 
mode is now given as 
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which amounts to (for the potential nonzero elements) 
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If we assume that this is the geometry in the beginning of the simulation and that ql  is smaller than il  
the transverse shear strain can be expressed as 

  i
i
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meaning that the transverse shear energy is not affected by poor aspect ratios, i.e., the transverse 
shear strain does not grow with decreasing ql . 

6 Solid element type -1 
Working out the details in the expression of the gradient-displacement matrix for solid element type -2 
reveals that this matrix is dense, i.e., there are 216 nonzero elements in this matrix that needs to be 
processed compared to 72 for the standard solid element type 2. A slight modification of the jacobian 
matrix will substantially reduce the computational expense for this element. Simply substitute the 
expressions for kiξ  and liξ  in Section 4 by  

 jkkki κξξ =  
and 
 jllli κξξ = . 
This will lead to a stiffness reduction for certain modes, in particular the out-of-plane hourglass mode 
as can be seen by once again looking at the transverse shear locking example. The velocity gradient 
for pure bending is now 
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and if it turns out that il  is smaller than ql , then this results in 
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That is, if i  represents the direction of the thinnest dimension, its corresponding bending strain is 
inadequately reduced. 

 
Figure 2 Implicit elastic bending of plate with poor element aspect ratio, different mesh discretizations 

7 Examples 

7.1 Implicit elastic bending 

A plate of dimensions 31510 mmxx  is clamped at one end and subjected to a Nm1  torque at the 
other end, see Figure 2. The Young’s modulus is GPa210  and the analytical solution for the end tip 
deflection is mm57143.0 . In order to study the mesh convergence for the three fully integrated bricks 
the plate is discretized into 112 xx , 224 xx , 448 xx , 8816 xx  and finally 161632 xx  elements, all 
elements having the same aspect ratio of 1:5 . 
 
Table 1 End tip deflection for different mesh discretizations and element types, error in parenthesis. 

Discretization  Solid element type 2 Solid element type -2 Solid element type -1 
2x1x1 0.0564 (90.1%) 0.6711 (17.4%) 0.6751 (18.1%) 
4x2x2 0.1699 (70.3%) 0.5466 (4.3%) 0.5522 (3.4%) 
8x4x4 0.3469 (39.3%) 0.5472 (4.2%) 0.5500 (3.8%) 
16x8x8 0.4820 (15.7%) 0.5516 (3.5%) 0.5527 (3.3%) 
32x16x16 0.5340 (6.6%) 0.5535 (3.1%) 0.5540 (3.1%) 
 
In Table 1 the results for the different mesh discretizations as well as element types are given, and it 
can be concluded that the new elements are substantially less stiff than the type 2 element and also 
quite accurate for that matter. 
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Figure 3 Hardening curve for material used in the strip and tube example. 

 
Figure 4 Initial and final configuration of strip, different mesh discretizations 

7.2 Plastic buckling of strip 

An initially imperfected plate strip of dimensions 3250100 mmxx  is fixed at one end and at the other 
subjected to a prescribed motion of sm /1 for the duration of s05.0 so that it deforms according to 

Figure 4. The material used is AA 6063 T6 from [2] for which the density is 3/3000 mkg , Young’s 
modulus is GPa3.68 , Poisson’s ratio is 3.0  and the hardening curve is shown in Figure 3. Three 
different mesh discretizations are used, all having two elements through the thickness and thus the 
aspect ratio varies between 1:5 , 2:5  and 4:5 . For this problem we measure the 
internal+hourglass energy and use the result from solid element type 1 as a reference to compare 
with. In Figure 5 the mesh convergence is shown for the different element types. While element type 2 
converges rather slow with mesh refinement, the new element types seem to be more or less 
insensitive to mesh size and compare well with element type 1. 
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Figure 5 Graphs showing internal energy (y-axis) for strip with different element aspect ratio (x-axis) 
and element types (legend). 

7.3 Plastic buckling of rectangular tube 

In order to check the accuracy for more general deformation modes a tube of height mm70 , 

rectangular cross section of 28080 mmx  and wall thickness of mm2  is fixed at one end and at the 
other subjected to a prescribed motion of sm /5  for the duration of s01.0  so that it deforms 
according to Figure 6. Symmetry conditions are used to model only one quarter of the tube and 
initiators are used to trigger the deformation. The same material as in the previous example is used, 
and this time we use one coarse and one fine discretization. The coarse discretization is with 2 
elements through the wall thickness and the fine is with 4 elements through the wall thickness. The 
aspect ratio varies between 1:5 , 1:3 , 1:2  and 1:1  for both set of mesh discretizations, only the 
coarse discretization is illustrated in Figure 6. In Figure 7 the results in terms of final 
internal+hourglass energy are shown for the different element types and aspect ratio, and again it 
appears that solid element types -1 and -2 converge faster than element type 2. Notable is that 
element type 1 gives a stiffer response for this problem. We believe this is due to the use of an elastic 
hourglass formulation and that there is a substantial amount of hourglass deformation in the corners of 
the tube. 

8 Conclusions 
In LS-DYNA, two new selective reduced integrated hexahedral elements are available that should be 
seen as alternatives to solid element type 2 for problems with poor element aspect ratio. The typical 
situation when the latter arises is when thin walled structures require solid element modelling and the 
mesh density must be kept at a minimum for efficiency reasons. The new elements are termed solid 
element type -1 and type -2, and they are derived from solid element type 2 by modifying its jacobian 
matrix in a heuristic manner to reduce the transverse shear stiffness for pure bending modes. The 
modification can be partially justified from a theoretical viewpoint but results show that they also work 
well in practice. The expense for using the new elements is a reduction in computational efficiency, 
and experiments indicate that solid element type -2 has a cost of about 3.5 times solid element 2 
whereas for solid element type -1 this number is as low as 1.2. Even though element type -2 is the 
theoretically more sound element, the numerical examples have shown no signs of solid element type 
-1 giving worse results. One should be aware however that there is a stiffness reduction in the out-of-
plane hourglass mode that could result in slightly more hourglassing which is illustrated in Figure 8 for 
the rectangular tube example. Nevertheless, given its proved accuracy and computational efficiency 
we find it reasonable to recommend using solid element type -1 in favour of solid element type -2 for 
explicit analyses. For large scale implicit analyses the influence of element processing should be small 
enough when compared to the expense of solving the linear system of equations that either one of the 
two elements could be used. 
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Figure 6 Initial and final configuration of rectangular tube with symmetry conditions, different mesh 
discretizations 
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Figure 7 Graphs showing internal energy (y-axis)  for tube with different element aspect ratio (x-axis), 
mesh discretizations (coarse above and fine below) and element types (legend). 

 
Figure 8 Illustration of the stiffness reduction in out-of-plane hourglass modes for solid element type -1 
(left) when compared to solid element type -2 (right). 
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