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Summary: 
 
The efficient search of global optimal solutions is an important contemporary subject. Different 
optimization methods tackle the search in different ways. The gradient based methods are among the 
fastest optimization methods but the final optimal solution depends on the starting point. The global 
search using these methods is carried out by providing many starting points. Other optimization 
methods like evolutionary algorithms that mimic the natural processes like evolution, and simulated 
annealing that emulates the metal cooling process via annealing can find the global optima but are 
criticized due to high computational expense. The adaptive simulated annealing algorithm has been 
proposed to be an efficient global optimizer. This algorithm is implemented in LS-OPT. A few analytical 
examples and meta-model based engineering optimization examples are used to demonstrate the 
efficiency of the global optimization using ASA. The optimization results are also compared with the 
existing LFOPC and genetic algorithm optimization methods.  
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1 Introduction 

Optimization is fast becoming a vital part of the design process in the engineering community due to 
ever increasing competitive pressure and other market forces. The efficient search of global optimal 
solution is much desired and many optimization methods have been proposed [1]. The gradient based 
algorithms are known to be the fastest algorithms however the convergence performance of these 
methods is dependent on the starting point. Often multiple starting points are used and then the best 
local optimal design is selected. One such method LFOPC [2] is available in LS-OPT® [3]. Among the 
global optimization methods, the genetic algorithms [4, 5], simulated annealing [6], particle swarm 
optimization [7] methods are the most popular but the search process is computationally very 
expensive. The genetic algorithms (GA) are particularly suited to find the Pareto optimal front for multi-
objective optimization [8]. Ingber [9,10] modified the conventional simulated annealing algorithm to 
significantly improve the convergence rate. This algorithm is known as adaptive simulated annealing 
(ASA). In this paper, the performance of three optimization algorithms, LFOPC, GA and ASA as 
implemented in LS-OPT, are compared using a few examples. 
 

2 Optimization Methods in LS-OPT 

This section briefly describes different optimization methods available in LS-OPT. 
 

2.1 LFOPC 

LFOPC is a gradient based optimization method developed by Snyman [2] that differs conceptually 
from other gradient methods, such as SQP, in that no explicit line searches are performed. This 
algorithm generates a dynamic trajectory path, from a starting point, towards a local optimum. The 
LFOPC algorithm uses a penalty function formulation to incorporate constraints into the optimization 
problem and solves the optimization problem in three phases: Phase 0, Phase 1 and Phase 2. In 
Phase 0, the active constraints are introduced as mild penalties through the pre-multiplication of a 
moderate penalty parameter value. This allows for the solution of the penalty function formulation 
where the violation of the (active) constraints are premultiplied by the penalty value and added to the 
objective function in the minimization process. After the solution of Phase 0 through the leap-frog 
dynamic trajectory method, some violations of the constraints are inevitable because of the moderate 
penalty. In the subsequent Phase 1, the penalty parameter is increased to more strictly penalize 
violations of the remaining active constraints. Finally, and only if the number of active constraints 
exceed the number of design variables, a compromised solution is found to the optimization problem 
in Phase 2. Otherwise, the solution terminates having reached convergence in Phase 1.  
 

2.2 Genetic Algorithm (GA) 

The genetic algorithm is a population-based, probabilistic, global optimization method that emulates 
the Darwinian principle of ‘survival of the fittest’. The concept of nature inspired algorithms was first 
envisaged by Prof. John Holland [4] at the University of Michigan in mid sixties. Later on this concept 
gained momentum in engineering optimization following the work of Prof. David Goldberg [5] and his 
students. The search is driven by three genetic operators, namely, selection, crossover and mutation. 
The search is carried out until a fixed number of generations are completed or when there are no 
significant improvements over a large number of generations. The constraints are handled using an 
efficient constraint handling strategy proposed by Deb [11] that emphasizes the feasible region before 
trying to minimize the objective function. The real-coded version [12] is implemented in LS-OPT [3] 
i.e., the variables are not mapped to binary space. 
 

2.3 Adaptive Simulated Annealing (ASA) 

The simulated annealing (SA) is a global stochastic optimization algorithm that mimics the 
metallurgical annealing process (Kirkpatrick [6]). The objective function is often called ‘energy’ E and 
is assumed to be related to the state, popularly known as temperature T, by a probability distribution. 
During the course of optimization, new points are sampled and accepted using a probabilistic criterion 
such that inferior points also have non-zero probability of getting accepted. The temperature is also 
updated. The search terminates when the temperature has fallen substantially. While the original SA 
algorithm allowed a very slow rate for reducing the temperature and hence a very high cost, Ingber [9, 
10] developed complex modifications to the sampling method that enabled the use of very high cooling 
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rates and hence reduced the simulation cost. He used non-uniform sampling rates for variables and 
used different cooling rates in the variable and function spaces. He also introduced a concept called 
‘reannealing’ that updated the cooling rate associated with each parameter by accounting the 
sensitivities of the objective function. The LS-OPT implementation uses a penalty function approach to 
handle constraints.     
 

3 Test Examples 

Two analytical and two engineering examples are used to demonstrate the applicability of the adaptive 
simulated annealing. The performance of the ASA is also compared with the LFOPC and GA 
optimization methods. 
 

3.1 Analytical Examples 

3.1.1 Schwefel Function 
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The global optimal solution is f* = 0.0, when all xi
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3.1.2 Rastrigin Function 
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The global optimal solution is f* = 0.0, when all xi
*
 = 0. 

 
a) Schwefel        b) Rastrigin 

Figure 3-1: Function plots x3 to x10 are fixed at 0. 

Both analytical examples are solved for 10 variables each. The complexity of these functions is 
illustrated in Figure 3-1. One can clearly see the difficulty these examples would pose for gradient 
based methods.    
 

3.2 Engineering Examples 

3.2.1 Crash optimization (CRASH) 

The third example is a crashworthiness optimization problem that involves simulation of a National 
Highway Transportation and Safety Association (NHTSA) vehicle undergoing a full frontal impact. The 
finite element model for the full vehicle (obtained from NCAC website [13]), shown in Figure 3-2, has 
approximately 55K elements. Nine gauge thicknesses affecting the members listed in Table 1, are 
taken as design variables and affected parts are shown in Figure 3-2.  
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Figure 3-2: Finite element model, and thickness design variables for CRASH example. 

The crash performance of the vehicle is characterized by considering the maximum acceleration, 
maximum displacement that links to intrusion, time taken by the vehicle to reach zero velocity state, 
and different stage pulses. These responses are taken at the accelerometer mounted in the middle of 
the front seat. To reduce the influence of numerical noise, SAE filtered acceleration (filter frequency 
60Hz) is used and different entities are averaged over two accelerometer nodes. While constraints are 
imposed on some of these crash performance criteria (stage pulses), it is desirable to optimize the 
performance with respect to other criteria. 
 
Table 1: Design variables for CRASH example 

Variable description Name Lower bound Baseline design Upper bound 

Rail front-right-inner t1 2.500 3.137 3.765 
Rail front-right-outer t2 2.480 3.112 3.750 
Rail front-left-inner t3 2.400 2.997 3.600 
Rail front-left-outer t4 2.400 3.072 3.600 
Rail right-back  t5 2.720 3.400 4.080 
Rail left-back t6 2.850 3.561 4.270 
Bumper t10 2.160 2.700 3.240 
Radiator bottom t64 1.000 1.262 1.510 
Cabin bottom t73 1.600 1.990 2.400 

 
Thus a multi-objective optimization problem can be formulated as follows: 

Minimize  
Mass and peak acceleration;  

Maximize  
Time-to-zero-velocity and maximum displacement; 

subject to constraints on variables and performance.  
 
Table 2: Design constraints 

 Upper bound 

Maximum displacement ( x crash) 721 mm 

Stage 1 pulse(SP1) 7.48 g  
Stage 2 pulse(SP2) 20.20 g 
Stage 3 pulse(SP3) 24.50 g 

 
The design variable bounds are given in Table 1 and the performance constraints, namely maximum 
displacements and stage pulses, are specified in Table 2. The three stage pulses are calculated from 

the averaged SAE filtered (60Hz) acceleration x&& and displacement x of the accelerometer nodes in 

the following fashion: 
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The integration limits (d1:d2) = (0:200); (200:400); (400:Max(xcrash)) for j = 1, 2, 3 respectively, 
represent different structural crash events. All displacement units are mm and the minus sign is used 
to convert acceleration to deceleration. During optimization, all objectives and constraints are scaled 
to avoid dimensionality issues. 
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The LS-DYNA® [14] explicit solver is used to simulate the crash. Each crashworthiness simulation 
takes approximately 5 hours using one core of a fully loaded quadcore Intel Xeon 5365 processor and 
generates an output of 225 MB. Obviously running 1000 simulations in serial would be very time-
consuming. Fortunately, the genetic algorithms are very amenable to parallelization such that all 
individuals in a generation can be simultaneously analyzed. A 640-core HP XC cluster, comprising 80 
ProLiant server nodes of two Intel Xeon 5365 quad-core processors (also known as Clovertown, with 
2 processors/8 cores), with a 3.0 GHz clock rate, was used to run simulations

1
. More details about 

running the simulation appear elsewhere [15]. 
 

3.2.2 Multi-disciplinary Reliability Based Design Optimization (RBDO) 

A RBDO example with six test cases is also considered. There are 12 design variables, 32 responses, 
seven objectives, and 25 probabilistic constraints. A weighted sum of all normalized objectives is used 
to formulate the single-objective optimization problem. The cost of evaluating each design is 
significant due to the probabilistic computations. 
 
The global optimal solution for the engineering examples is not known so the improvements are 
measured with respect to the baseline designs.  
 

4 Results 

4.1 Analytical Examples 

The convergence histories for the adaptive simulated annealing (ASA) and the genetic algorithm (GA) 
methods for the analytical examples are shown in Figure 4-1. 

Schwefel

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0 5000 10000 15000 20000 25000

# of functions

F
 (
m
in
im
iz
e
)

ASA

GA

Rastrigin

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 5000 10000 15000 20000 25000

# of functions

F
 (
m
in
im
iz
e
)

ASA

GA

 
a) Schwefel      b) Rastrigin 

Figure 4-1: Convergence history of ASA and GA optimization methods on analytical examples. 

4.1.1 Schwefel function 

Table 3: Predicted optimal solution of Schwefel function from different optimization methods. The 
global optimal solution is f* = 0.0, when all xi

*
 = 420.9687. 

 F x1 x2 x3 x4 x5 

ASA 6.571e-3 420.9 421 421 420.9 421 
GA 3.953e-3 421.1 421 420.9 421 420.9 

LFOP 1.072e+3 420.5 420.5 420.5 -500 420.5 

  x6 x7 x8 x9 x10 

ASA  421 420.9 421 421.1 421 
GA  420.9 421 421 420.9 421 

LFOP  -303 420.5 -500 -500 -500 

 
The optimal solutions for the Schwefel function using different optimization methods are shown in 
Table 3. As expected, the ASA and the GA methods resulted in the optimal solutions close to the 
global optimal but the LFOP solution was very poor despite 7 different starting points. The 

                                                      
1
 It is important to note that the cluster was shared by many users and each node was fully populated by the 

queuing system. 
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convergence history for the ASA and the GA methods shown in Figure 4-1(a) also shows comparable 
performance with continuous reduction in the objective function. 
 

4.1.2 Rastrigin function 

The optimal solutions from different optimization methods are tabulated in Table 3. As observed for 
the Schwefel function, the ASA and the GA methods resulted in the optimal solutions close to the 
global optimal solution but the LFOP solution was stuck in local optima. The performance of the ASA 
was the best among all optimization methods. Figure 4-1(b) also indicated better convergence rate for 
the ASA algorithm compared to the GA. 
 
Table 4: Predicted optimal solution of Rastrigin function from different optimization methods. The 
global optimal solution is f* = 0.0, when all xi

*
 = 0. 

 F x1 x2 x3 x4 x5 

ASA 3.119e-3 2.80e-3 -7.09e-3 4.48e-4 -4.01e-4 -1.32e-3 
GA 1.790e-1 -1.51E-02 1.32E-03 9.47E-04 -1.31E-02 6.06E-03 

LFOP 9.999e0 0.99 0.99 0.99 0.99 0.99 

  x6 x7 x8 x9 x10 

ASA  1.18e-3 -2.70e-4 -4.68e-5 -1.95e-3 -1.32e-4 
GA  -7.04E-03 -4.04E-03 -9.22E-03 -8.29E-03 -1.56E-02 

LFOP  0.99 0.99 0.99 0.99 0.99 

 

4.2 Engineering Examples 
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a) CRASH      b) RBDO 

Figure 4-2: Convergence history of ASA and GA methods for engineering optimization problems. 

4.2.1 CRASH Example 

Table 5: Predicted optimal and the baseline designs for the CRASH example. 

  Objectives Constraints 

 F Disp Accel Mass Time Disp SP1 SP2 SP3 

ASA -0.374 1.000 -1.576 -1.006 1.208 1.000 1.000 0.952 0.963 
GA -0.408 1.000 -1.602 -1.006 1.201 1.000 0.999 0.965 0.963 
LFOP -0.371 1.000 -1.580 -1.006 1.215 1.000 1.000 0.942 0.964 
Baseline -1.228 0.975 -2.250 -1.007 1.054 0.975 1.051 1.054 1.003 

 t1 t2 t3 t4 t5 t6 t10 t64 t73 

ASA 2.509 3.635 2.400 2.576 2.720 4.270 2.602 1.510 2.148 
GA 2.708 3.416 2.400 2.695 2.721 4.269 2.584 1.489 2.095 
LFOP 2.500 3.706 2.400 2.401 2.720 4.270 2.615 1.510 2.200 
Baseline 3.137 3.112 2.297 3.072 3.400 3.561 2.700 1.262 1.990 

 
Table 5 enlists the predicted optimal solutions for the CRASH example. The baseline design was 
infeasible and caused high peak acceleration and had a low time to reach velocity. Optimization 
significantly reduced the peak acceleration significantly and improved the time to reach zero velocity. 
While the LFOPC (with 20 multi-starts) resulted in the best performance, the ASA result was 
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comparable. The GA resulted in the worst performance of the three optimization methods though by 
tuning some parameters, the optimal solution was comparable. That result is not reported here to 
ensure fair comparison among all optimization methods. The design variable values for the optimal 
solution obtained from different optimization methods were in the same vicinity. The convergence 
history (Figure 4-2(b)) comparison of the ASA and the GA also indicated that the ASA converged 
much faster than the GA.  
 

4.2.2 RBDO Example 

Finally, the optimization results for the RBDO example are presented in Table 6. As was observed for 
other problems, the ASA performed very well for the RBDO example too. The LFOP algorithm (with 23 
starting points) performed the best. The performance of the GA was slightly poor than other algorithms 
but with some parameter tuning it could also be improved (result not shown here). The convergence 
history (Figure 4-2(b)) also showed that the ASA converged to the optima faster than the GA.  
 
Table 6: Optimization results for the RBDO example. 

 F F1 F2 F3 F4 F5 F6 F7 Feasibility 

ASA 6.957 1.000 1.000 1.203 0.877 1.075 0.789 1.013 YES 
GA 6.969 1.000 1.000 1.209 0.872 1.063 0.789 1.036 YES 

LFOP 6.956 1.000 1.000 1.202 0.878 1.076 0.789 1.011 YES 
Baseline 8.586 1.235 1.687 1.243 0.957 1.031 1.081 1.352 NO 

 

4.3 Simulation Time 
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Figure 4-3: Simulation time. 

While the convergence performance of different algorithms was studied in the previous two 
subsections, the computational expense to obtain the optimal solution is shown in Figure 4-3. All 
simulations were carried on the Intel Xeon 2.66 GHz processor with 4 GB memory. The RBDO 
problem took the maximum time because the estimation of the reliability constraints required an 
expensive procedure. Among all optimization algorithms, the computational expense of LFOPC was 
the highest due to the multi-start procedure. On the other hand the adaptive simulated annealing and 
the genetic algorithm resulted in optimal solution in an order of magnitude lesser time than LFOPC. 
The ASA was the fastest algorithm. 
 

5 Conclusions 

In this paper, a comparison of different optimization algorithms available in LS-OPT is carried out 
using two analytical examples and two engineering problems including RBDO examples. It was 
observed that the adaptive simulated annealing algorithm was the best optimizer for all test problems. 

Cop
yr

ig
ht

 b
y 

DYN
Am

or
e



7
th
 European LS-DYNA Conference 

 

 
© 2009 Copyright by DYNAmore GmbH 

This method converged closest to the optimal solution with the least computational time. The LFOPC 
algorithm converged to the optimal solutions for engineering problems but was poorer for analytical 
problems. Also the search using LFOPC was an order of magnitude more expensive than the genetic 
algorithm and the ASA methods. The genetic algorithm is a good alternative global optimization 
method to ASA as it uses slightly higher computational expense while producing similar accuracy. 
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