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1 Abstract 

The LS-DYNA® family of codes have been used at AWE for many years.   For a long time they were 
used on our shared memory platforms (SMPs) to carry out implicit structural and coupled thermal-
structural analyses, amongst others.  Over time processor speeds have continually increased and 
larger memory has become available at reducing costs.  This has led to an increase in the size of 
models as meshes have been refined for better definition and realism of the problems under 
investigation.  However the simulation of the long-term responses of engineering structures poses 
special difficulties when large models need to be analysed encompassing non-linear behaviours.  
These non-linearities can arise through sliding interfaces, and more commonly through the complex 
constitutive responses of non-traditional fabrication materials, such as foams and explosives, that act 
as structural, load-bearing components.   
 
Unlike explicit analysis, in implicit problems the equations cannot be decoupled from each other, and 
so implicit simulations immediately make large demands on the amount of memory required to solve 
the problem in-core, and these requirements increase rapidly as the model is refined.  For the most 
complex analyses the turnaround times can grow from weeks to potentially months, as model size 
increases.  This problem is being addressed by re-writing implicit solvers to run in parallel mode on 
distributed memory platforms (DMPs). Although these developments have helped these codes to 
reduce turnaround times, work is required to further enhance their scalability.   
 
Shared memory and MPI-versions of LS-DYNA have been used at AWE to investigate the transition 
from SMPs to DMPs for the solution of large, contact-dominated thermal-structural implicit problems.  
The hybrid version of these codes was also used in some simulations, but this is early work at AWE.  
This paper reports our findings.  It also examines the influence of code characteristics on computing 
platform requirements.  The significant reduction in turnaround time that was realised using MPI 
instead of the SMP version for a major test problem will be presented, and the scaling characteristics 
of the MPI and hybrid versions of LS-DYNA for this problem will be shown.     
 

2 Introduction 

In order to clearly present the work reported here, it will be convenient to use the following 
nomenclature for the codes used in analysis.  ‘DYNA3D’ will be used to collectively refer to the earlier 
LLNL, and the successor LSTC versions of DYNA3D.  ‘LSDYNA3D’ will be used when referring to the 
SMP version of LS-DYNA.  ‘MPPDYNA’ will be used to refer to the parallel version of LS-DYNA, and 
‘Hybrid-DYNA’ will be used for LSTC’s hybrid version of LS-DYNA.  
 
The DYNA3D (i.e. the earlier LLNL and the recent LSTC) family of codes has been extensively used 
by AWE’s Engineering Analysis Group for nearly three decades.  Until about a year ago, LSDYNA3D 
was our workhorse for simulating implicit problems, whilst MPPDYNA has over the years been used 
only for explicit analyses. 
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Historically, nearly all major implicit codes have started life as serial codes whilst explicit codes have 
always been parallelised.  This is due to the fundamental difference in the formulations of implicit and 
explicit problems.  The equations in explicit formulations are decoupled from each other, so that each 
single equation can be solved independently of all others.  This greatly reduces memory requirements 
since large system matrices are not required to be set up, unlike the case of implicit formulations 
where the equations cannot be decoupled and must be solved simultaneously.  The penalty one pays 
in using explicit methods is that the time step of integration is usually very small, and the solution is 
only conditionally stable.  In implicit calculations memory requirements are large, but the solution is 
unconditionally stable thus allowing for much larger loadsteps compared to explicit analyses.  
 
Over time, implicit analysis codes have developed from serial to shared memory parallel (SMP) 
processing codes, which allowed a small degree of parallelisation, but nothing comparable to the 
degree to which explicit codes can be parallelised.  LSDYNA3D is such an SMP code, and in our 
experience it scales well to between 4-8 processors.  The basic problem lies with the difficulty of 
parallelising direct solvers which are the preferred methodology for solving implicit problems, 
particularly those involving large degrees of non-linearity.  Iterative solvers, which can be readily 
parallelised, can be used to solve implicit problems but they can face convergence difficulties in 
complex, contact-dominated, highly non-linear problems that involve a mix of element types in the 
mesh discretisations.  However there is little evidence in published literature of the successful use of 
iterative solvers to analyse structural mechanics problems possessing these characteristics.  
 
As the size of an assembly that is to be modelled with an implicit code increases, and as the number 
of components that make up the assembly grows, then the demand on computing resources begins to 
increase quite rapidly if the behaviour of the whole assembly needs to be simulated.  Simulation of 
environments or loadings that excite non-linear material behaviour makes yet bigger demands on 
computing resources, and this need is further increased if geometric non-linearities also need to be 
accounted for.  As assemblies or structures become more complex, or are to be used in mission-
critical applications, then the need to gain greater insight into their behaviour under varied and 
complex environments becomes increasingly important.  This usually requires a greater refinement of 
the mesh discretisations used to model such structures.  As soon as meshes are refined, then the 
memory and cpu-time requirements start to increase rapidly, particularly for implicit problems that are 
simulated with direct solvers.   
 
For long analysis durations, where each loadstep takes many hours of elapsed time, the total 
turnaround time with SMP codes can stretch from weeks to months.  This situation is clearly 
intolerable, particularly if that analysis is only one of a series of simulations that need to be carried out 
in sequence.   One must then look to ways of speeding up the implicit analysis. 
 
As it happens, steady progress has been made by researchers over the last ten years or so in 
developing improved methodologies for parallelising direct solvers.  This has enabled code developers 
such as LSTC, HKS, ANSYS, etc. to produce versions that scale much better than their SMP 
antecedents, and produce answers on much shorter timescales.  MPPDYNA possesses parallelised 
implicit solvers, and this code was used for the work reported here.  Similar parallel solvers such as 
ABAQUS and others will be investigated in the future at AWE to assess their capabilities in relation to 
MPPDYNA.  The main reason for concentrating on MPPDYNA in this initial study is that it is a sister 
code of LSDYNA3D, and in theory our legacy finite element models that ran with LSDYNA3D should 
quickly be able to run with MPPDYNA requiring few modifications.  However such expectations can 
often be misplaced.  A second reason for using these two codes is that AWE has developed and 
added to them a user material model which is useful for modelling the creep behaviour of polymeric 
materials [Kalsi, 2009].   
 
This paper reports on work which will inform the process of transitioning from shared memory 
platforms to distributed memory platforms for the solution of large contact-dominated thermal-
structural implicit problems at AWE.  The influence of code design on computing platform 
requirements is discussed, and some of the problems associated with large file sizes, and data 
transfer and storage are mentioned.  The significant reduction in turnaround times, using MPP- and 
Hybrid-DYNA instead of LSDYNA3D, which was achieved for a major test problem will be shown.  
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3 Influence of Solver Methodologies on Computer Platforms 

To support the different super-computing needs of the Engineering and Physics communities, AWE 
has provided two types of high-performance computing architectures, SMP and DMP, on site for a 
long time.  This dual-platform arrangement was put in place to support the serial or limited-scalability 
SMP codes that were used by the Engineering Analysis community for its implicit analyses, and the 
highly scalable and parallelised codes used by the Physics community for their explicit calculations.  
Supporting and maintaining two different types of machines with different architectures and each with 
its own particular requirements is an obviously expensive arrangement, involving some duplication of 
effort.  It would be preferable to have a bigger, single system that comprehensively caters for all users 
on site. 
 
LSDYNA3D has historically been used on shared memory platforms at AWE, and the attraction of 
shared memory platforms is that even a single processor or core can address the whole of memory, if 
required.  This is a legacy from the days of serial codes, and later a very useful feature for implicit 
codes that achieved limited parallelisation.  As model sizes have grown, it has been necessary to 
acquire larger and larger amounts of memory.  Two SGI machines were purchased in 2010, one with 
2TB of memory, and the other with 3TB.  This enabled increasingly larger models to be analysed, and 
allowed for a number of analyses to be run concurrently.  However, a point is reached at which 
although the memory is more than adequate, it is the turnaround times that become unacceptably 
long.  This point was reached when the largest model sizes were of the order of two million elements.   
 
In itself this model size is not very large: what increases run-times are the complexities introduced by 
the presence of a large number of contact interfaces, the activation of highly non-linear rate and/or 
temperature-dependent material behaviours, the coupling of thermal-structural interactions, and the 
total time for which the simulation needs to be run.  When the total simulation is composed of a series 
of sequential analyses, each of which can take weeks to months, then the situation is untenable.  The 
only thing to do on SMP platforms in that case is to reduce model sizes, which is unacceptable since 
this will lead to decreased solution accuracy.     
 
AWE’s distributed memory platforms have thousands of cores, but each core typically has only a 
limited amount of memory attached to it, between 2GB-4GB.   These are optimal machines for 
carrying out transient, explicit calculations.  As mentioned earlier this is because the explicit equations 
can all be decoupled from each other, and each core needs to address only a small amount of 
memory at any one time, independently of all other cores.   
 

4 Test Runs with MPP- and Hybrid-DYNA 

Test analyses were first run using MPPDYNA on our DMP machines, and later some were repeated 
with Hybrid-DYNA.  Each node in our DMP platforms has 16 cores, each of which has an attached 
4GB of memory, i.e. a total of 64GB/node.   
 
In running implicit problems with MPPDYNA, there are two limits: as more and more cores per node 
are used for analysis, the memory available on the node gets split into smaller and smaller blocks.  
Ultimately a limit is reached where the memory cannot be sub-divided any further without the analysis 
aborting.  Equally, as more and more nodes (i.e. cores) are used for analysis, the system overheads 
increase, to the point that any further increase in core-count actually increases the turnaround time, 
i.e. one has gone beyond the optimal computing resource allocations for that problem.   So for any 
particular problem there is a sweet spot that provides optimal turnaround times. 
 
For smaller models all of the 16 cores on a node can be used to run MPPDYNA.  However as the 
model size grows, it is found that each core must be given a minimum amount of memory otherwise 
the analysis fails to run - this means that not all available cores can be used for analysis, and some 
will remain idle, thus resulting in wasted compute cycles.  There is no clear or reliable guidance on 
how much this memory should be, it appears to be problem dependent and has to be determined by 
trial and error.  This is something that could be improved in the code.  This minimum memory 
requirement has quite a surprising impact on the amount of computing resources required to run a 
large-sized model. 
 
A few years ago the author created a series of test problems prefixed ‘CYLxxx’.  ‘CYL’ is a descriptor 
for the model which consists of a series of co-axial cylinders.  ‘xxx’ denotes the approximate model 
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size in terms of the number of eight-noded brick elements that are used in the finite element mesh.  
The purpose of creating these models was to generate an unclassified finite element model that could 
be transmitted for use outside of AWE for comparing platform and code performances, using an 
example that typified our code feature usages without being too complicated.  The applied 
displacement boundary conditions ensured that the resulting relative motions would properly exercise 
the cpu-intensive contact logic algorithms.   
 
Figure 1 shows a view of the ‘CYL1e6’ model, which consists of 6 co-axial cylinders, and has 1026432 
nodes and 921600 elements.  The boundary and loading conditions are also described in Figure 1: all 
the cylinders are fixed at their bases, there are internal and external pressures applied, and cylinders 
2 and 6 are subject to a positive time-dependent axial displacement, whilst cylinder 4 is given a similar 
negative displacement.  All materials are modelled as elastic.  Sliding-with-voids contact surfaces are 
defined between contacting cylinders.   
 
Different sizes and versions of these ‘CYLxxx’ generic model have been sent out from AWE to those 
interested in using it to study code or platform performances [Wang, 2011; Lin, 2012], e.g. CYL2e6, 
CYL4e6, etc.  Usually the size of the model is increased by lengthening the cylinders, whilst at the 
same time maintaining the previous element sizes.  Examples also exist where this is done by 
increasing the number of co-axial cylinders instead.  Non-linear materials are also used in more 
complicated tests, and coupled thermal-structural models have also been used in simulations.   
 
Analysis of the CYL1e6 model using LSDYNA3D on a shared memory platform took over 1200 
minutes for 5 loadsteps.  The same model was analysed using 16 nodes but an increasing number of 
cores with MPPDYNA, and the turnaround times for these analyses are shown in Figure 2.  The 
optimal numbers of cores to use for this problem is 192, and with this arrangement the quickest 
MPPDYNA analysis runs 12 times faster than LSDYNA3D on our large-memory SMP machine.  
Clearly, although 16 nodes are used in all analyses, not all cores are being used in all the runs.  To 
recover these lost compute cycles, and to investigate the performance of Hybrid-DYNA, a number of 
analyses were run using this code.  These results are also presented in Figure 2.  Hybrid-DYNA runs 
in MPI mode between nodes, but in SMP mode on the processor boards within a node.  This 
functionality enables the recovery of the compute cycles which are lost by the idle cores mentioned 
earlier when running MPPDYNA. 
 
Comparison with MPPDYNA results shows that the Hybrid version runs faster when using the same 
number of cores.  In fact, the results show that running on 10 nodes (i.e. 10x16 cores) Hybrid-
MPPDYNA completes the job in 72.5 minutes, whilst MPPDYNA takes 91.7 minutes on 16 nodes.  
Much more telling is the data presented in Table 1, which shows the number of nodes used to run the 
Hybrid-MPPDYNA tests.  So instead of running only one analysis across 16 nodes with MPPDYNA, 
one could potentially run three Hybrid-MPPDYNA analyses on 18 nodes, or 2 analyses on 16 nodes, 
in roughly the same elapsed time or faster, thereby very significantly increasing throughput of work.  
This capability is a real boost in comparison to the way LSDYNA3D was performing at AWE until very 
recently.   
 
Our recent work shows that Hybrid-MPPDYNA provides a huge advantage over MPPDYNA when 
running large implicit problems.  Consider the case of THERM_CYL6e6 (which failed to run on SMP 
machine with LSDYNA3D) which is a model that consists of approximately 6 million solid elements 
and is set up for a coupled thermal-structural analysis.  It was found that out of the 16 cores available 
per node, only 2 cores could actually be used for computations since the analysis would not run 
without each core being allocated at least 24GB of memory.  So running on 1 or 2 nodes is almost the 
same as running LSDYNA3D on an SMP machine, and takes a prohibitively long time to complete 
even a single loadstep.  Apart from this, the remaining 14 cores are being wasted, unable to contribute 
to the computations.  So to reduce turnaround times, it became necessary to run the problem on a 
larger number of nodes. 
 
Figure 3 shows the reduction in turnaround times for this test problem with increasing numbers of 
cores, with only 2 cores per node being used for computations.  It is pointed out that the number of 
cores actually reserved for MPPDYNA was eight times the numbers shown in this Figure.  Note that 
the run times shown are for a single loadstep only.  Table 2 lists the number of nodes and cores used 
per analysis.  In going from 100 to 600 cores that were actually used for calculations, the turnaround 
time was reduced by roughly 3.  
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This test example raises a number of interesting issues.  Firstly, as shown in Table 2, only 2 of the 16 
cores available on a node are actually doing any calculations, the remaining 14 are idle.  Secondly, as 
the number of nodes is increased in order to reduce run times, a bigger and bigger fraction of the 
super-computer is taken up by a single application.  Thirdly, for long duration simulations, this fraction 
of computing resources is unavailable to other users for long periods of time, which degrades overall 
system performance; this happens because compute nodes are generally locked for the use of only 
one user, and sharing with others is not permitted.  This situation is made worse if a number of such 
large implicit calculations need to be run concurrently.   
 
One solution to this is to have so-called ‘fat’ nodes making up a fraction of the super-computer.  Fat 
nodes are those that have bigger amounts of memory per core, e.g. 8, 16, 24GB, etc., compared to 
the standard 2-4GB.  In that way fewer nodes out of the total available would be occupied by any 
single implicit calculation, and many fewer computational cycles would be lost from the system.   
 
One THERM_CYL6e6 analysis, also indicated in Figure 3,  has so far been run using Hybrid-
MPPDYNA, and more will be run and reported in the future.  This analysis was run using only 16 
nodes, and for this configuration Hybrid-DYNA went out-of-core because of insufficient memory.  Even 
so, it completed the analysis in about 225 minutes, which is roughly twice as long as running 
MPPDYNA on 300 nodes. Running in-core on a larger number of nodes will reduce this turnaround 
time, and as alluded these studies have not yet been done.  So for waiting a little longer, it is possible 
to make huge gains by running implicit analyses with Hybrid-DYNA.  For example nearly twenty 
Hybrid-DYNA analyses could be carried out in parallel using 320 nodes instead of only one on 300 
nodes with MPPDYNA without major differences in elapsed times.  This is a huge performance 
increase over MPPDYNA when analysing such large and complex implicit problems. 
 

5 Comments on the Constraints Associated with Using Commercial Codes 

In an ideal world, in establishments such as ours one would have access to in-house analysis codes 
so that model or code-related bugs could be debugged as rapidly as possible, especially where the 
finite element models cannot be released to outsiders for reasons of commercial or security 
sensitivities.  Otherwise unpredictable delays can arise. 
 
Given the worldwide user bases that run commercial codes such as MPPDYNA and other similar 
codes, it is generally the case that these codes are essentially bug-free for the majority of common 
applications because of the constant interactions with that user community.  However it can happen in 
state-of-the-art, continually advancing codes, that the less-frequently used features when used in 
particular or rare combinations, may hit latent bugs.  Whilst rigorous QA testing is regularly performed 
by code vendors, they usually do not test their codes on long duration, very large complex problems 
which may need to be run over hundreds of cores – and they cannot really be expected to do so.  So 
as in our experience, situations can arise where a smaller model of the same problem will run 
successfully, but a larger one encounters difficulties due to yet-undiscovered code bugs. 
 
Significant delays can occur when a large model fails to run successfully: the code vendor will not 
release the source code to the user, and the user cannot release the finite element model to the code 
vendor because of commercial or security sensitivities.  The complexity and size of our actual model is 
such that it is not easy to create exactly the same conditions in a non-sensitive model that could be 
passed to the code vendors.  Significant efforts were made to create such equivalent models, but the 
errors could not be replicated with these.  In this situation it becomes very difficult to isolate and then 
correct the code bugs, and the time delays that arise can be long. 
 
The method adopted to help debugging at AWE was for the vendor to supply an executable of the 
code with print statements embedded near to the suspected source of the error.  The printout from an 
abortive analysis with this code was then returned to the vendor, to get an updated executable with 
print statements moved further on.  The process was then repeated.  In this instance it took over three 
weeks to fix one particular bug.  It is to be expected that similar situations may arise in the future as 
we explore the complex multi-physics capabilities of MPPDYNA and other commercial codes, 
compared to those we have already exercised for many years in LSDYNA3D. It is worth recording 
here that LSTC provided very good, high quality support in our de-bugging exercises. 
 

9th European LS-DYNA Conference 2013 
_________________________________________________________________________________



 
 

 

6 Results of Our Investigations 

The baseline finite element model which was analysed with MPPDYNA consisted of over 1.5 million 
elements, and simulated a coupled thermal-structural problem dominated by extensive contacting 
regions.  A test simulation was carried out over a period of 100s, taking 20 variable-sized loadsteps, 
with the structural loads being ramped up over 1s, whilst temperature changes occurred over the full 
100s.   
 
The reduction in turnaround time with increasing core count, running MPPDYNA on 16 nodes, is 
shown in Figure 4.  With LSDYNA3D running on our SMP machine, this analysis took over 1600 
minutes.  So the speedup that MPPDYNA provided for this analysis in comparison to LSDYNA3D is a 
factor of about 10.  The run-times for analysing this problem with Hybrid-DYNA are also shown in 
Figure 4 and indicate that for this problem Hybrid-DYNA runs slightly slower than MPPDYNA until it is 
run over six nodes or more.  The quickest turnaround, in the analyses shown in this Figure, is with 
Hybrid-DYNA running over 8 nodes.  It is important to point out that MPPDYNA could not run this 
problem on fewer than 4 nodes, whilst Hybrid-DYNA was able to run on even as few as 2 nodes, 
running only about 50% slower than MPPDYNA on 16 nodes.  This again emphasises the efficiency 
and economy of Hybrid-DYNA over MPPDYNA, as described in the earlier examples.  
 
This very significant reduction in turnaround times for implicit problems now makes it possible to plan 
extensive, chronologically sequential series of analyses that previously could not have been 
undertaken because of the very long turnaround times with LSDYNA3D. 
 
Demonstration of successful solution of large, implicit problems on distributed memory machines 
suggests that there is little need in future for buying expensive, shared (large-) memory platforms, so 
that a single machine architecture can be envisaged for future use.  Whether ‘fat’ nodes are a part of 
this architecture is an open question at the moment.  
 
Since Hybrid-DYNA now provides much faster turnaround times with great efficiencies, there is a 
natural tendency to increase mesh refinements to produce higher quality representations of actual 
structures.  This will result in very large results files being produced.  As an example, even with the 
relatively small 1.5 million element model, one complete set of results files was sized at 15TB.  Post-
processing of such large data sets to extricate critical data values is a time consuming, laborious 
business.  Moving files this large across disks is another time-consuming task.  File sets this large, 
resulting from only one of a set of many such analyses, also makes exacting demands on the backup 
and permanent storage facilities.  In fact, the ability to perform the types of large implicit calculations 
now possible with codes such as MPPDYNA means that the supporting computing infrastructure, such 
as networks, disk sizes and connectivities, storage silos, etc., also needs to be carefully reviewed and 
optimised for maximum throughput and greater user convenience. 
 

7 Conclusions 

In our experience, moving from LSDYNA3D to a highly parallelised MPPDYNA version has not been a 
straightforward exercise.  In retrospect it was probably unrealistic to expect a smooth and quick 
transition from the one code to the other in view of the complexities of our analyses, on top of the 
major code modifications required to develop the required implicit parallel capability, which should not 
be underestimated.  Further work is needed to ensure that more efficient use is made of available 
memory by MPPDYNA.  
 
We investigated Hybrid-DYNA after initially running our test problems with MPPDYNA, which had itself 
shown huge improvements over LSDYNA3D.  The performance of Hybrid-DYNA has easily outpaced 
that of MPPDYNA for our test problems, and it is a much more efficient code in the way it employs 
computing resources.  Hybrid-DYNA shows faster turnarounds whilst using a lot less resource, 
permitting a number of parallel analyses to be run on the same computing resources that MPPDYNA 
would have needed for a single run.  
 
The ability to perform large-scale analyses using parallel codes such as Hybrid-DYNA on DMPs is a 
very significant advance in the simulation of implicit, mission-critical, highly non-linear, contact-
dominated coupled thermal-structural analyses.  The shorter turnaround times that are now achievable 
means that problems which previously would have taken weeks to months using SMP codes can be 
analysed within hours to days.  This means that meaningful progress can be made for example 
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towards demonstrating mesh convergence.  Sensitivity studies that previously could not be 
undertaken can now be planned for completion within acceptable timescales.  Equally, real-time 
detailed design support can be provided for urgent requirements where complex models are readily 
available. 
 
The fact that Hybrid-DYNA solves complex, implicit problems successfully and much faster on 
distributed memory machines means that expensive large-memory, SMP platforms which were 
previously needed to run LSDYNA3D will no longer be required in the future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Details of the Generic CYL1e6 Finite Element Model 
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Fig. 2: MPP- and Hybrid-DYNA Scaling Behaviour with CYL1e6 Model 
 

 
 
 
Fig. 3: MPP- and HYBRID-DYNA Run Times with Therm_CYL6e6 Model 
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Fig. 4: Baseline Test Model: MPP- and HYBRID-DYNA Run Times and Computing Resources Used  
 
 
 
 

 
 
 
Table 1 : MPP- and Hybrid-DYNA: Comparison of Computing Resources Used in Analysis 
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Table 2 : Computing Resources used by MPPDYNA to run Therm_CYL6e6 Analyses 
 
 
 
 

8 References  

1. Kalsi, G.S. 2009. Modelling the Creep Response of a Polymer Bonded Explosive. NAFEMS   
World Congress, June 16-19, Crete, Greece. 

 
2. Wang, J. 2011. Hybrid (MPP+OpenMP) version of LS-DYNA. LS-DYNA Update Forum in    

Filderstadt, Germany, Oct. 12-13.  
 
3. Lin, Y.Y. 2012. A Comprehensive Study on the Performance of Implicit LS-DYNA. 12th 

International LS-DYNA Users Conference, Dearborn, Michigan, USA.  
 
 

9 Summary 

MPPDYNA and Hybrid-DYNA were used to reproduce large, complex implicit analyses previously 
carried out using LSDYNA3D and have reduced turnaround times by factors between 10 and 20.  This 
is very welcome, but it was found that MPPDYNA makes increasingly inefficient use of computing 
resources as model sizes increase.  Hybrid-DYNA is generally faster and very significantly more 
efficient, and is recommended for the simulation of large, contact-dominated implicit models in 
preference to MPPDYNA.  
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