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1 Introduction 

Many constitutive models were developed in the literature to model the complex behaviour of polymer 
materials. These models can be sorted in two categories: the physical based models where the 
microstructure of the material is taken into account for representing the macroscopic behaviour [1,2] 
and the phenomenological based models where the material discontinuities, in the microstructural 
scale, are homogenised in a representative volume element. In this way, elasto-plastic constitutive 
models based on the “overstress” concept (VBO) [3] using the unified state variable theory were 
extended for polymeric materials [4,5]. The addition of mineral fillers in the semi-crystalline matrix 
increases the cavitation phenomenon. In this case, the viscoelastic-viscoplastic deformation of the 
material is accompanied by damage in the form of nucleation, growth and coalescence of cavities. 
Many damage model were developed for polymer application in order to represent this phenomenon 
[6,7,8,9]. The damage present in this kind of material induces a softening behaviour which leads to the 
localisation of the strain in a narrow zone of the structure accompanied by numerical solutions 
depending of the finite element mesh. The nonlocal model where introduced in the literature in this 
way, in order to overcome the mesh dependency phenomenon [10,11]. 
In this work, a non-associated viscoelastic-viscoplastic model coupled with nonlocal damage is 
developed in order to model a mineral filled semi-crystalline polymer used in the automotive industry. 
The constitutive equations of the model are stated under finite strain framework by using a hypoelastic 
formulation. The interesting properties of the logarithmic tensor linking the work conjugate pair Cauchy 
stress and Henky strain are used in the proposed model. In order to obtain a mesh independent 
solution with the material exhibiting softening, an integral-type nonlocal damage is developed in this 
work. 
 

2 Constitutive model 

In the proposed model, the direct relation linking the second order stretching tensor D  and the 

corotational rate of the Henky strain tensor 

log

h  proposed by Xiao et al. [12] is used, i.e., 

Dhhhh 


loglog
log

ΩΩ  (1) 

where
 
h  is the Henky strain tensor and 

log
Ω  the logarithmic spin tensor defined by  
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where
2

iib   are the eigenvalues of the left Cauchy-Green deformation tensor B and iP  are the 

eigenprojection subordinate to eigenvalues 0i  of the left stretch tensor V . The hypoelastic 

formulation of the viscoelastic-viscoplastic model is used assuming the additive decomposition if the 

stretching tensor in a viscoelastic 
ve

D  and a viscoplastic 
vp

D part, i.e., 

     
















 log

loglog

,,,
vpvpve

hhDDD σσσσ . (3) 

 

By using the corotational integration of a corotational rate of an Eulerian second order tensor

log

a , i.e., 

aa 


corot

log

, the general form of the constitutive model is given by 

 vp
hh  ,σσ . (4) 

The linear viscoelastic model of Wierchert (generalised Maxwell model) is used in order to model the 
strain rate sensitivity on the stiffness of the material. The damaged stress tensor given by the 

viscoelastic model at time t  ,i.e. )(tσ , resulting of a viscoelastic strain increment at time   is defined 

such as 

   
 

 
 








d

d

d
:exp1

1

ve
t

i

N

i

ve

i

ve t
Dt

h
 






















 
 LLσ , (5) 

where D  is the isotropic damage variable, i  are the relaxation times of each Maxwell element,
ve


L  

and 
ve

i
L  are the fourth order long term elastic stiffness tensor and the elastic stiffness tensor of the 

thi Hook element included in the 
thi  Maxwell element, respectively given by 

III  
KG

d

ve
2L 12

and III  idi

ve

i
KG2L , (6) 

where G , K , iG , iK are the long term and instantaneous shear an bulk moduli, respectively. 

In order to take the hydrostatic pressure sensitivity of the material into account, the yield surface given 

by Raghava et al. [13] depending on the second invariant 2J of the deviatoric stress tensor S and on 

the first invariant 1I of the stress tensor is used in the constitutive model. This yield surface is defined 

as follows: 

 
         

 
 ,

12

1211
,,

2

2

1

2

1





R

D

JII
DRf vp 




 tσ

Sσσ
σ  (7) 

where   is the ratio between the tensile and compression yield stress, i.e tσ  and cσ , respectively 

and R  is the isotropic hardening law defined such as 

                                                      
1
 

d
I Is the fourth order deviatoric projection tensor. 

2
 I is the second order identity tensor. 
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       ,exp1exp 5

2

4

3

32211  bbbbQbQR   (8) 

432121 ,,,, bbbbQQ  and 5b are material parameters. The hardening variable used in Eq. (8) is the 

equivalent viscoplastic strain, i.e., 

.:
3

2 vpvp
hh  (9) 

The deformation of polymeric material is not an isochoric phenomenon. The non-associated plasticity 

is therefore used in order to represent this volume variation. A second dissipation potential F   (which 

is different to the yield surface f ) is also postulated as follows: 

 
 

,
1

3
22

2

D

ppJ
F






 S
σ  (10) 

where 
 and 

  are parameters which define the volume variation for positive and negative 

hydrostatic pressures, respectively. The symbol   is the Macauley bracket, that is, for any scalar x , 

given by   2/xx  . With this formulation, the flow direction of the rate of the viscoplastic strain 

tensor for positive (dilatation) and negative (compaction) pressures can evolve independently. 
According to the non-associated flow rule, the viscoplastic strain rate tensor is given by 

,nh 



  

σ

Fvp
 (11) 

where n  is the direction of the viscoplastic flow expressed as 

  










  ISn pp

Dg


3

1

2

3

)1(

1
 (12) 

and the scalar g  is given by 

  .3
22

2 ppJg   S  (13) 

Polymeric materials are highly strain-rate dependent. A viscoplastic formulation is therefore used to 
take the strain rate effect on the yield surface into account. To include rate-dependent plasticity 

(viscoplasticity), an overstress [14] is defined in order to extend the (static) yield surface f  (Eq. (7)). 

This extension implies that the yield surface is not only negative (i.e., elastic state) or null but can be 
positive (i.e., viscoplastic state). In the constitutive model, the overstress is defined by 

         
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1211 2
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1 Sσσ
. (14) 

v is the viscous stress which represents the difference between the static and the dynamic yield 

surface. Usually, in Perzyna-type viscoplastic model, the viscoplastic multiplier   is function of the 

overstress. In the constitutive model the viscoplastic multiplier is postulated such as 

 
,

:
3

2
  

1
nvvp

R 







tσ
nn

  (15) 

where n  is the strain rate sensitivity parameter and 
vp is the viscosity parameter. 
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3 Nonlocal isotropic damage model 

During the deformation of semi-crystalline polymers where mineral charges are introduced, the well-
known cavitation phenomenon occurs. The cavitation is due to decohesion of the matrix-particles 
interface. In this case the viscoplastic deformation is accompanied by the damage process in the form 
of nucleation, growth and coalescence of cavities [15,16]. In the constitutive model, a 
phenomenological damage model is introduced in order to represent this cavitation. In this work, an 

isotropic damage, represented by a scalar variable D  is therefore introduced in the constitutive 
equations. The nucleation and growth of micro-voids and micro-cracks during the deformation of filled 
polymer materials under tensile loading induce a softening behaviour. The finite element simulation of 
materials exhibiting strain softening leads to the well-known localisation phenomenon of the 
deformations in a narrow zone of the structure. This localisation phenomenon induces pathological 
dependency of the finite element mesh on the numerical responses. In order to overcome the spurious 
mesh dependency, an integral-type nonlocal model [10,11], where a damage variable defined by a 

spatial averaging, is used in the constitutive model. The nonlocal variable a in a material point x


is 

mathematically defined as a weighted average of the local values a  in all material points of the body

Β , such as 

 
     yΒyayx

x
a

Β
d,

1
 





. (16) 

 yx


,  is a Gaussian type weight function given by 

  









2

2

2
exp

1
,

l

r

c
yx


, (17) 

where the scaling factor c  depends on the problem dimension. c  is defined by l2 for one 

dimension, 
22 l for two dimensions and 

3
3

2
l


for the three dimensional case. The weight function 

depends only on the distance yxr


 . The intrinsic length l  determines the size of the volume 

which effectively contributes to the nonlocal quantity. In the above integral, the local continuum 

viscoplasticity is retrieved if l  tends towards zero. In order to have a nonlocal quantity equals to its 

corresponding local quantity a for homogeneous local values, the normalizing factor  x


  introduced 

in Eq. (16) is given by 

     yΒyxx
Β

d, 


 . (18) 

The numerical implementation of an integral-type nonlocal model requires to have access to all the 
integration points of the finite element mesh in order to satisfy the consistency conditions of the 
material model in all the material points at the end of the time step. Unfortunately, in a user-material 
provided by most of commercial finite element codes, all the integration point information are not 
available at the same time. Furthermore, from the nonlocal nature of the problem, the resolution of 
constitutive equations becomes complex. An alternative nonlocal formulation proposed by Tvergaard 
and Needleman [17] is used in order to overcome these difficulties. The above authors have proposed 
a nonlocal version of the Gurson model where the local variable representing the void volume fraction 

f is replaced by fnl  , where 
f

fnl




 . the penalty factor 

nl  is therefore the ratio between a 

local and a nonlocal quantity calculated at the previous time step. With this nonlocal formulation, the 
above authors have noted that the mesh sensitivity have been completely removed for a sufficiently 

fine mesh relative to the material intrinsic length. Following the above concept, a nonlocal factor 
nl  

is introduced in the damage evolution in order to take the damage values of the averaging elements 

into account. The quantity 
nl  is also computed by 
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n

nnl

D

D




 , (19) 

where nD is the nonlocal damage rate calculated with the averaging operator from the local damage 

rate nD  arising from the previous time step. With this formulation, only the scalar 
nl  is introduced in 

the constitutive equations and the local form of the constitutive equations is therefore conserved. In 
the constitutive model, the evolution of the damage variable is postulated following 

    








 



 

ck
ppJ

Dg
D





exp

9

2
3

)1(

2

2 S


 , (20) 

where ck  is a material parameter. 

This constitutive model is implemented in Fortran 90 in a user-material subroutine for the explicit finite 
element software LS-DYNA®. An implicit scheme is used for the stress update and the viscoelastic 
predictor/viscoplastic corrector scheme is used to solve the constitutive equations. In order to 
implement the nonlocal procedure, since a Lagrangian regularisation is assumed, a nonlocal 

averaging operator is computed only at the first time step and the nonlocal factor 
nl is computed at 

each time step from the previous value of the damage rate. The details of the implementation of the 
constitutive model and the procedure for the identification of the material parameters are given in [18]. 

 

4 Numerical results 

Numerical results in term of mesh dependency on a three-dimensional cylindrical bar meshed with 
solid elements are firstly presented. The simulations are performed on a mineral filled semi-crystalline 
polymer (polypropylene) used in automotive application exhibiting strain softening due to the cavitation 
involved in the viscoplastic deformation process. A comparison between the numerical model and 
experiments are presented at the end of this section. 
 

4.1 Three dimentional necking bar analisys 

The mesh independence of the constitutive model is verified on the necking simulation of a three-
dimensional cylindrical bar in tension. The cylindrical bar with a length of 53.334 mm and a radius of 
12.826 mm is subjected to uniaxial tension up to a total axial elongation of 8 mm (with a velocity of 1 
mm/s). For symmetry reasons, the analysis is performed on the eighth of the geometry with the 
appropriate boundary conditions. In order to evaluate the mesh sensitivity of the constitutive model, 
three different meshes with 663, 2100 and 6300 reduced integrated eight node hexahedral elements 
are simulated with and without the nonlocal damage regularization

3
. The three different meshes are 

shown in Fig. 1. The three meshes contain a geometric imperfection of 1.8 % at the bottom in order to 
trig the necking in the centre of the cylindrical bar. For the following and for all the simulations carried 
out in this section, the material parameters used are given by [18]. 
 

                                                      
3
 The local damage model is recovered by setting the nonlocal factor 

nl  to 1 for all the gauss points. 
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Fig. 1: Three-dimensional cylindrical bar necking. Finite element meshes of 663 (a), 2100 (b) and 
6300 (c) elements. 
 
An intrinsic length of 1 mm is used for the nonlocal regularisation. The deformed shapes resulting to 
the simulations of the three meshes without the nonlocal regularisation is shown in Fig. 2. For the 
three meshes simulated with the local model, larger deformations of the elements in the center of the 
bar are observed. A localisation of the deformations in the elements where the necking occurs takes 
place. 

 
Fig. 2: Three-dimensional cylindrical bar necking. Deformed shapes for the three meshes with 663 (a), 
2100 (b) and 6300 (c) elements simulated without the nonlocal regularisation. 
 
Fig. 3 shows the deformed shapes for the three meshes simulated with the nonlocal model.  
 

 
Fig. 3: Three-dimensional cylindrical bar necking. Deformed shapes for the three meshes with 663 (a), 
2100 (b) and 6300 (c) elements simulated with the nonlocal regularisation. 
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The spurious localisation of the deformation in the elements at the necking does not occur. The 
deformations of the elements in the centre of the bar are not over-estimated in comparison with the 
around elements. The reaction forces at the bottom of the meshes versus the displacements at the top 
boundaries for the six simulations are shown in Fig. 4. 
 

 
Fig. 4: Force response of the simulations for the 3 different meshes and the two damage models (local 
and nonlocal). 
 
The simulations carried out with the local damage model have the same results in term of force-
displacement until an axial elongation of 2mm. For a more important elongation, the responses of 
these simulations become mesh dependent. By using the nonlocal formulation of the damage model, 
the responses of the simulations are very close. The nonlocal damage averaging play its rule of 
localisation limiter and the results becomes mesh independent. 
 

4.2 Comparison with experiments 

The numerical uniaxial tensile tests presented in this section are carried out for the 5 following loading 
speeds: 1, 100 mm/min, 0.08, 0.8 and 4 m/s. The geometry of the specimen, boundary conditions and 
finite element mesh are shown in Fig. 5. For the simulations, the specimen is meshed with reduced 
integrated shell elements and 3 integration points through the thickness are used. The loading 
consists on a prescribed monotonic velocity (with free horizontal displacement) on the nodes of the 
right edge of the mesh. The comparisons between the constitutive model and the experimental data 
are shown in Fig. 6. The reaction forces at the left of the specimens versus the displacements 
enforced at the right boundaries are compared with the experimental data. The constitutive model 
results are in agreement with the experimental measurements for all the speed loadings. In order to 
show the accuracy of the viscoelastic model, Fig. 7 shows the comparison between the numerical 
model and the experimental data for three speed loadings: 1, 50 mm/min and 0.08 m/s. The results 
are focused on the first part of the curves where the viscoelastic part can be visualised easily. The 
numerical model has a good prediction of the stiffness of the material loaded at various speed 
loadings. In order to compare the evolution of the local logarithmic strains (longitudinal and transverse) 
of the numerical model with the experimental observations, Fig. 8 shows the true stresses (Cauchy)-
strains (Henky) responses of one element in length gauge of the specimen given by the numerical 
model with the experimental measurement (by DIC) for 4 different speed loadings. The longitudinal 
and transverse logarithmic strain components are well captured by the non-associative viscoplastic 
constitutive model. 
 

 
Fig. 5: Finite element mesh and boundary conditions of the tensile specimen. 
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Fig. 6: Experimental vs. constitutive model in 
uniaxial tensile loading. 
 

 
Fig. 7: Experimental vs. constitutive model in 
uniaxial tensile loading. 

 

 
Fig. 8: Experimental vs. constitutive model in uniaxial tensile loading. 
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