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Abstract 
 
Dealing with natural variation in input parameters and environmental conditions presents the automotive industry 
with significant challenges. Lack of consideration of variability in results can lead to unpleasant surprises during 
testing, with a consequent risk of unplanned cost and delay. In a purely virtual product development world, analysis 
techniques must lead to designs that are robust with respect to external noise sources, in order to minimise test-to-
test and test-to-prediction variation. 
 
This paper discusses some of the issues faced in dealing with variability in an occupant restraint system, and 
presents an analysis approach that is helping to provide insight into causes of scatter, leading to potential design 
improvements to help reduce it. Conventionally the CAE process has used nominal values for input parameters, and 
has been satisfied with single, deterministic solutions. In many cases this approach is based on unreasonable 
assumptions, and a structured consideration of variability is vital.  
 
In this context we describe an example where Principal Components Analysis has been used to study scatter in an 
airbag model. Building on previous experience with the application of this technology to deformed geometries, the 
technique has been extended to allow a consideration of scatter in curves, as exemplified by the set of chest 
acceleration time-histories shown in figure 1. 
 
 

 
 
 
Figure 1.Scatter in chest acceleration time histories 
 
The mathematical background to the PCA method, as implemented in Diffcrash, is presented, and its extension to 
curves is explained. It will be shown how scatter in two crash dummy channels can be related to each other and to 
airbag deformation behaviours, as an aid to developing design improvements. 
 
Virtual techniques have much to offer in understanding and managing scatter in physical systems, and the 
consideration of variability in the CAE process is slowly becoming more common-place. The PCA approach 
presented here is a useful addition to the toolset available, giving valuable insight into physical phenomena. 
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Background 
 

Vehicle functional performance targets are becoming ever more stringent. The demands on 
engineers to create optimized but robust design solutions, which simultaneously satisfy a 
multitude of requirements, mean that a detailed understanding of the response of the design to 
variation in input parameters is essential. However, variability is a feature of all physical systems 
and operating environments, and this can lead to test-to-test variation, with uncertainty in CAE 
predictions. In an automotive context the list of potential sources of variation is huge and diverse, 
including such parameters as tolerances on component parameters like panel gauges, uncertainty 
in crash dummy stiffness, chaotic behaviour of casting fracture, and imprecision in the 
specification of crash boundary conditions. Given the potential for variation, a successful 
performance confirmation test on one vehicle will not necessarily be repeated on a second 
vehicle test, possibly leading to an unwelcome surprise and the need for late remedial design 
changes, which are generally expensive and inefficient. This is of particular concern in a zero-
prototype development process, where, for many load cases, there is provision for only one 
vehicle confirmation test. 
 
For the reasons above, a consideration of variability is an essential part of any CAE-based 
product development process. The aim of such consideration is to quantify and minimize the 
expected test-to-test variation through a structured approach to robust design, and the 
development of systems that behave in a predictable way. In the CAE environment, new 
techniques and thought processes are required. In particular, the conventional expectation of a 
single, deterministic solution to a CAE analysis is bound to lead to a surprise when the product is 
tested, as a result of the effects already discussed: 
 

• Test to test variability 
• Unwarranted assumptions as to input parameter values 
• Non-robust CAE models  

 
Before attempting a design optimization, the system must be sufficiently robust that it is not 
unreasonably sensitive to small changes in input parameters. This requires a systematic analysis 
of, and improvement in, design stability. Fortunately, CAE techniques can produce useful insight 
into the nature of variation, as multiple versions of a design can be created and evaluated, and 
statistical tools can be used to understand and manage the data produced. An early application of 
this type of analysis in the vehicle development process allows mass and cost-efficient solutions 
to be created, which reduce the risk of late surprises at test. 
 
The adoption by the industry of a structured approach to managing variability and robustness, 
using CAE techniques, has so far been the exception, and is only now starting to become more 
commonplace. New techniques are needed to extend this type of analysis, and one such 
technique, based on Principal Components Analysis will be described. 
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Analysis of Robustness using Diffcrash 

 
The Diffcrash software package allows a more in-depth analysis of sources of numerical 
variability. This software allows the user to identify distinct modes of behaviour from a 
variability study, and to track these modes to their time and point of origin. This provides 
information that can help to locate the cause of the variability, as an aid to improving the model. 
One of the mathematical analysis tools used by DIFFCRASH is Principle Component Analysis 
(PCA).  

PCA Analysis for Crash Simulation Results 

According to [1] Principle Component Analysis (PCA) was introduced by Pearson in the context 
of biological phenomena, and by Karhunen in the context of stochastic processes [2]. In [3] PCA 
was applied to full crash simulation results. Let  

 
be the displacement of simulation run i out of n simulation runs at node p and time t. If  
is the mean of all simulation runs, the covariance matrix C can be defined as  

 and  
The eigenvectors  of C form a new basis (principle components) and the square roots of 
the eigenvalues of C) provide a measure for the importance of each component.  
If this method is applied to crash simulation results,  scalar products between the simulations 
runs of length  have to be computed (  number of points,  number of time 
steps.)  

From                     , 

it follows that            . 
The  show the major trends of the differences between the simulation results.  

Difference PCA 

Instead of considering the whole simulation results, correlation matrices can also be defined for 
the simulation results at parts of the model and for specific time steps. If P is a part of the model 
and T subset of the time steps, then  can be defined as follows: 

 and 

 . 
(  denotes the size of  times the size of .) 
The intrinsic dimension of the set of simulation results can be defined as the number of major 
components in its differences (for more formal definitions see [4, Chapter 3]). Buckling or any 
other local instability in the model or numerical procedures increases the intrinsic dimension of 
simulation results at parts which are affected, compared to those that are not affected. Therefore, 
in the context of stability of crash simulation, those parts and time steps for which the intrinsic 
dimension increases are of particular interest.  
Numerically this can be evaluated by determining eigenvectors and eigenvalues of   
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for the covariance matrices of the simulation results at two different parts  and  and two 
different sets of time steps  and  . If there are positive eigenvalues for a certain choice of  
(which separates noise from real signals), the simulation results at ( , ) show additional 
effects compared to those at ( , ). If is the corresponding eigenvector,  shows 
the effect on ( , ) and also the impact on the other parts of the model. Similar methods can be 
used to remove those effects from this result, which do not affect ( , ) directly.  
This approach has been filed for application of a Patent at the German Patent office (DPMA 
number 10 2009 057 295.3) by Fraunhofer Gesellschaft, Munich. 

CURVES 

Instead of variation of node positions a major interest of the design engineer may the analysis of 
scatter of curves (c.f. [5]). The analysis of curves can be included into the analysis by defining a 
matrix  for each curve CV and each time step T as follows: 
Let  

 
the scalar value of the kth curve at time step t in simulation run i, then  is defined as: 

 and 

 . 

 may now be used in the analysis in the same way as  before.  

 
Crash Analysis 

 
Consumer crash rating programmes, such as the European ‘EuroNCAP’, and the American 
equivalent, ‘NCAP’, are significant drivers for vehicle design. Crash dummy injury values play a 
significant role in generating these consumer crash ratings, as well as being the basis for 
certifying compliance to crash legislation. Dummy injury is controlled by the occupant restraint 
system, including airbags and seat belt systems. At JLR DYNA models of these components are 
used in a vehicle system environment to simulate the behaviour of the dummies in response to 
changes in restraint system input parameters. In a zero-prototype development environment, 
tooling is released on the basis of this analysis, with a physical test carried out only to confirm 
compliance to targets. In this context a fundamental characteristic of the system must be a 
repeatable behaviour, providing confidence that the expected ratings will be achieved. Variation 
in model behaviour resulting from small changes to input parameters can indicate design 
instability, or poor modeling quality, and it is essential to isolate the cause of the variation, 
establish which of these types of sources is responsible, and either improve the design, or rectify 
the modeling technique.  
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Variation background 
 
Analysis of sources of variability must start with a characterisation of the nature and size of the 
variation. In terms of crash analysis, this is often discovered as a spread in peak values such as 
chest acceleration. These are extracted from time-history curves and are related to scatter in 
deformed geometry. In both these domains, analysis of a number of overlaid datasets can be 
confusing, and characterization in terms of distinct behaviors is not straightforward, making 
identification of a source difficult. PCA analysis allows the spread in behaviours to be 
decomposed into a small set of distinct significant modes that can be studied individually in 
terms of their characteristics and sources. The relative strength of each mode can be quantified 
and a mode with a high relative significance characterises a large proportion of the variation in 
results. Modifications designed to influence this mode can be expected to have a correspondingly 
significant effect on the overall behaviour and level of variation. Previous work by the authors 
[6] has applied this methodology to an analysis of variation in coordinate positions of 
corresponding nodes in a model. The identification of modes during this analysis has allowed the 
source of variation in geometric behavior to be studied, and improvements made to the model. 
The toolset has now been extended to the study of time histories, where a similar approach can 
be applied to generate characteristic modes in the time-history domain. This allows the influence 
of the geometrical modes on the observed time-histories to be determined. In this way, 
development effort can be targeted at the geometrical modes of particular relevance to the time-
histories used within the crash rating system, legal compliance standard, or other engineering 
target system.  
 

Airbag Example 
 
An example of a vehicle crash model has previously been described [6], in which relatively large 
differences in the dummy injury values were observed, due to small changes to input parameters. 
The model also showed significant variation in the kinematic behaviour of the airbag and dummy 
upper body. The source and development of the scatter in the deformed geometry of the dummy 
and airbag was investigated using the PCA-based tool set implemented in Diffcrash, which led to 
a modeling improvement that reduced the dispersion in deformed geometry.  
 
Since dummy injury values, which are used for certification of vehicles with respect to crash 
behaviour, are extracted from time-history curves, it is important to know how scatter in these 
curves relates to variation in the kinematic behaviours of individual components. As described in 
the previous section, the PCA technique implemented within Diffcrash was further developed to 
address this need. In the airbag example, chest acceleration time-histories from 30 runs were 
compared, the runs differing from each other in small changes to the input parameters, and a 
significant spread in the chest acceleration time histories may be seen in figure 2. The level of 
variation at 85ms is too large to allow a confident prediction of crash rating.  
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Figure 2. Scatter in chest acceleration time-histories 
 
Using curve PCA, these time-histories can be characterised as a set of curve modes. Typically 
only the first few curve modes are sufficient to closely approximate the overall data structure, 
and this allows the engineer to focus on these individual characteristics of the data, rather than 
attempting to interpret the complete data for all the curves all at once. Curve modes can be 
visualised as a pair of artificial curves that indicate the bounds of the mode; all of the original 
curves can be considered to be comprised of varying proportions of the different modes, the first 
mode being the one that makes the largest contribution to variation in the curves. The most 
significant chest acceleration curve mode is shown in figure 3. This mode accounts for 44% of 
the overall scatter in the time-histories, and a reduction in the magnitude of this mode is expected 
to lead to a significant reduction in overall spread in the original time-histories. 
 

 
 
Figure 3. First chest acceleration mode 
 
This analysis forms the basis of further investigation into the source of the variation, with the aim 
of developing potential design solutions to reduce it. Firstly, it is useful to consider how scatter 
in the chest acceleration time-history is related to scatter in other dummy injury values. An 
understanding of this relationship indicates whether a single issue is responsible for scatter in the 
two channels; a high correlation implies a single issue; a low correlation indicates independent 
issues that must be addressed separately. A second approach is to study the relationship between 
curve modes and geometrical deformation modes, as this offers the opportunity of targeting 
design modifications to address the variation in time-histories. 
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Curve-curve relationships 
 
Passenger neck moment time-histories for the same 30 runs are plotted in figure 4, and a 
significant level of scatter can also be seen in this channel. 
 

 
 
Figure 4. Scatter in neck moment time-histories 
 
The corresponding first neck moment curve mode is shown in figure 5. 
 

 
 
Figure 5. First neck moment mode 
 
Difference-PCA was used to study the relationship between the chest acceleration and neck 
moment time-histories. DCPA involves the identification of a mode from one set of curves, and 
the elimination of the effect of this mode from a second set of curves. The reduction in the scatter 
in the second curve set indicates how closely this is related to variation in the first curve set. In 
the airbag example, subtraction of the first chest acceleration mode from the neck moment scatter 
results in a reduction of 30%, indicating a significant, but not dominant, relationship. Measures 
to reduce scatter in the first chest acceleration mode are expected to reduce scatter in neck 
moment, but not to eliminate it.  
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This mode subtraction is further illustrated in figure 6, where the neck moment first mode is 
plotted, before and after subtraction of the first chest acceleration mode. The reduced separation 
of mode boundaries, particularly after 80ms, indicates the nature of the reduction in neck 
moment scatter if the first chest acceleration mode can be eliminated, and shows a significant 
improvement at the curve maximum.  
 

 
 

 
Figure 6. Reduced neck moment curve mode boundaries following chest acceleration mode                                              
elimination 
 

Curve-deformed shape relationships 
 
Two techniques can be applied to the study of curve–deformed shape relationships: part-curve 
correlation and DPCA. 
 
Part-curve correlation involves a value being assigned to each part in the model to indicate its 
correlation to scatter in a time-history, and this can be visualised as a contour plot. The sequence 
of plots in figure 7 shows the part-curve correlation contour for chest acceleration, and clearly 
indicates a link between chest acceleration scatter and airbag behaviour, highlighting it as an area 
for improvement in design or modeling technique 
 
 

 
 
Figure 7. Part-curve correlation plots at 23ms, 35ms and 50ms 
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To further quantify the strength of this relationship, DPCA allows subtraction of airbag deformed 
shape modes from scatter in the time-histories, and, in this case, the effect of subtraction of the 
first two airbag modes is to reduce the scatter in both chest acceleration and neck moment by 
20%. This reduction is illustrated by the curve mode boundaries shown in figures 8 and 9 
respectively. In particular, the separation of mode boundaries for the neck moment can be 
significantly reduced after 85ms, which indicates that a meaningful reduction in neck moment 
scatter can be achieved by improving airbag stability.  
 

 
 
 
Figure 8.Subtraction of first two airbag deformation mode from chest acceleration mode  

 
 

 
 
Figure 9. Subtraction of first two airbag deformation mode from neck moment mode 
 

 
Summary 

 
Creating robust designs in the face of natural variation represents a challenge for a CAE-based 
development process. However, the CAE process offers new approaches to the study of 
variation, and techniques based on PCA have been presented, with an example of their 
application to an occupant restraint system model. In this present work the technique was 
extended to the treatment of curves, allowing dummy injury time-histories to be analysed. It has 
been shown that this allows scatter in time-histories for two different channels, to be related to 
each other. Further, scatter in time-histories can be related to modes of deformation, providing a 
useful basis for the development of designs that minimise sensitivity to noise in input parameters, 
and so reduce the risk of disruption to the vehicle development programme. 
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