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1 Abstract 

The interesting and complex behavior of fluids emerges mainly from interaction processes. SPH has 
shown to be a simple, yet flexible method to cope with many fluid simulation problems in a robust way. 
However in SPH, particles have a spatial distance (smoothing length) over which their properties are 
smoothed by a kernel function. Smoothed quantities of a particles show falsified values when densities 
and masses of neighboring particles vary largely within the smoothing length. The erroneous 
quantities lead to undesirable effects, reaching from unphysical density and pressure variations to 
spurious and unnatural interface tensions, and even to severe numerical instabilities. In this paper, 
instead of using the traditional interaction between SPH parts through SPH interpolation, we present a 
node to node contact between different SPH parts to avoid the instabilities due to large density ratios 
at the interfaces. The methods allow the users to select the desired amount of contact force between 
two SPH parts by choosing the desired penalty scale factors according to the simulation problem at 
hand. Some examples are tested to show that the method was successfully used to stably simulate 
multiple fluids with large density contrasts without the above described artifacts apparent in standard 
SPH simulation. 
 
 

2 Introduction 

Many of the problems of geophysical and industrial fluid dynamics involve complex flows of multiple 
liquids and gases coupled with heat transfer. The motion of the surfaces of the liquids can involve 
sloshing, splashing and fragmentation. Thermal and chemical processes present further 
complications. The simulation of such systems can sometimes present difficulties for finite difference 
and finite element methods, particularly when coupled with complex free surface motion, while 
smoothed particle hydrodynamics can easily follow wave breaking, and it provides a reasonable 
simulation of splash on a length scale exceeding that where surface tension must be included. 
 
SPH is a Lagrangian method for solving partial differential equations. Essentially, the domain is 
discretized by approximating it by a series of roughly equi-spaced particles. They move and change 
their properties (such as temperature) in accordance with a set of ordinary differential equations 
derived from the original governing PDEs. SPH was first applied by Lucy (1977) to astrophysical 
problems, and was extended by Gingold (1982). Cloutman (1991) used SPH to model hypervelocity 
impacts. Libersky and Petschk have shown that SPH can be used to model materials with strength. In 
recent years it has been developed as a method for incompressible isothermal enclosed flows by 
Monaghan (1994).   
 
When simulating fluids, it is important to capture interaction effects accurately in order to reproduce 
real world behavior. Smoothed Particle Hydrodynamics has shown to be a simple, yet flexible method 
to cope with many fluid simulation problems in a robust way. Unfortunately, the results obtained when 
using SPH to simulate miscible fluids are severely affected, especially if density ratios become large. 
In SPH, particles have a spatial distance covered by smooth length over which their properties are 
smoothed by a kernel function. Problems arise when rest densities and masses of neighboring 
particles vary within the smoothing length, as in such cases the smoothed quantities of a particle show 
falsified values. The undesirable effects reach from unphysical density and pressure variations to 
spurious and unnatural interface tensions, as well as severe numerical instabilities. 
        
OTT and SCHNETTER (2003) have derived an adapted continuity equation and compared the sound 
and shock wave simulation results to analytical solution. Although the results for these specific 
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applications are promising, the use of the standard as well as the adapted continuity equation does 
not produce stable results for long-term simulations. TARTAKOVSKY and MEAKIN (2005), Hu and 
ADAMS (2006) used a corrected density summation for their investigations. TARTAKOVSKY and 
MEAKIN concentrated on miscible flow in fracture apertures with complex geometry and combined a 
modified SPH flow equation with an advection-diffusion equation. Hu and ADAMS focused on the 
investigation of numerical examples such as droplet oscillation and deformation in shear flow in 2D 
and the comparison to analytical solutions. Solenthaler and Pajarola (2008) replaced the density 
computation in SPH by a measure of particle densities and consequently derived new formulations for 
pressure and viscous forces. This method enables the user to select the desired amount of interface 
tension according to the simulation problems at hand. Muller et al (2005) proposed a technique to 
model fluid-fluid interaction based on the Smoothed Particle Hydrodynamics method. For the 
simulation of air-water interaction, air particles were generated on the fly only where needed, they also 
modeled dynamics phase changes and interface forces, those techniques make possible the 
simulation of the phenomena such as boiling water, trapped air and the dynamics of a lava lamp. 
         
In this paper, instead of using the traditional interaction between SPH parts through SPH interpolation, 
we present a node to node contact between different SPH parts to avoid the instabilities due to large 
density ratios at the interfaces, also the SPH interpolation of density and forces was carried out locally 
inside the physical domain of the each SPH part. The methods allow the users to select the desired 
amount of contact force between two SPH parts by choosing the desired penalty scale factors 
according to the simulation problem at hand. Some examples are tested to show that the method was 
successfully used to stably simulate multiple fluids with large density contrasts without the above 
described artifacts apparent in standard SPH simulation. 
 

3 Standard SPH formulation 

 

3.1 Fundamentals of the SPH method 

 
Particles methods are based on quadrature formulas on moving particles                            , P is the 
set of the particles.           is the location of particle i and           is the weight of the particle i. The 
quadrature formulation for a function can be written as: 
        
                                                                                                                                                   (1) 
 
 
The quadrature formulation (1) together with the definition of smoothing kernel leads to the definition 
of the particle approximation of a function. The interpolated value of a function:               at position 
       using the SPH method is: 
  
                                                                                                                                                   (2) 
 
 
 
Where the sum is over all particles inside     and within a radius     , W is a spline based interpolation 
kernel of radius     . It mimics the shape of a delta function but without the infinite tails. It is a  
function. The kernel function is defined as following: 
 
 
                                                                                                                                                    (3) 
 
 

 ),( hxxW ji   when 0h ,   is Dirac function, h  is a function of ix  and jx  and is the 
so-called smoothing length of the kernel. 
 
And the cubic B-spline function is defined: 
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                                                                                                                                                      (4) 
 
 
 
 
The gradient of the function           is given by applying the operator of derivation on the smoothing 
length: 
 
 
                                                                                                                                                     (5) 
 
Evaluating an interpolated product of two functions is given by the product of their interpolated values. 
 

                                      
   
                                                Fig 1. Support size of 2d kennel function 
 
 
 

3.2 Continuity equation and Momentum equation 

 
The particle approximation of continuity equation is defined as: 
 
 
                                                                                                                                                      (6) 
 
 
It is Galilean invariant due to that the positions and velocities appear only as differences, and has 
good numerical conservation properties. iv  is the velocity component at particle i. 
 
The discretized form of the SPH momentum equation is developed as: 
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The above formulation ensures that stress is automatically continuous across material interfaces. 
Different types of SPH momentum equations can be achieved through applying the identity equations 
into the normal SPH momentum equation. Symmetric formulation of SPH momentum equation can 
reduce the errors arising from particle inconsistency problem. 
 
From equation (7), the following particle body forces were derived: 
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Where jiij xxr  ,   is the viscosity coefficient of the fluid. The pressure ip  are computed via the 
constitutive equation: 

                                                      )( 0  ii kp                                                              (9) 
 
where k  is the stiffness of the fluid and 0  is its initial density. 
Finally, for the acceleration of a particle i, we have: 
 

                                   )(/1 cos external

i

ityvis

i

pressure

iii FFF  a                      (10)            
 
Where external

iF  are external forces such as body forces or forces due to contacts. 
 

4 Multiple Fluids 

 
The above equations (1)--(10) were designed to handle single phase fluid and can be easily extended 
in order to handle multiple fluids with different rest density. Cares must be taken to avoid the interface 
instability due to the large density ratio across the fluids interfaces. 
 

4.1 Interaction through standard SPH interpolation 

 
As shown in Fig 2, the standard way to handle the interactions between different SPH parts is through 
the SPH interpolation functions (i.e treated as one part for multiple SPH fluids) and no contact 
treatments are needed on the interfaces of the diffferent SPH parts. In SPH, particles have a spatial 
distance (smoothing length) over which their properties are smoothed by a kernel function (such as 
density, pressure). Smoothed quantities of a particles show falsified values when densities and 
masses of neighboring particles vary largely within the smoothing length. As shown in Muller et al 
(2005), miscible fluids with a density ratio larger than 10 can not be realistically simulated if the 
standard SPH density summation is used. The reason is that in SPH, the macroscopic flow is mainly 
governed by the density computation. Over or underestimating the density leads to erroneous 
pressure values, which might result in unnatural acceleration caused by erroneously introduce 
pressure ratio (Ihmsen et al 2011). Also lead to a spurious interface tension and a large gap between 
the fluids. The erroneous quantities lead to undesirable effects, reaching from unphysical density and 
pressure variations to spurious and unnatural interface tensions, and even to severe numerical 
instabilities 
 
Another issue with the interaction through standard SPH interpolation is that different SPH fluid parts 
may stick together after the interaction due to the SPH function interpolations. 
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           Fig 2. Interaction through SPH interpolation (treated as one part and no contact is needed) 
 
 
The following example of tank sloshing with water and air shows that when two fluids with different 
rest densities are mixed, a density gradient and, thus, a pressure gradient will emerge at their 
common interface. This pressure gradient will cause the less dense fluid to rise inside the denser fluid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      Fig 3.Instability on the interface for tank sloshing with SPH interpolation method 
 
 

4.2 Interaction through node to node contacts 

 
A penalty based node to node contact model is introduced on the interfaces of the different SPH parts. 
As shown in Fig 4., all the SPH interpolations (density, pressure and so on) are carried out inside the 
local domains of each SPH part. No spurious interface tension or interfaces instability happened in this 
model. The contact forces on the interfaces will be applied to the external forces as in equation (10). 
 
 
 
                    

Standard SPH interpolation for high density ratio across the interface 

 

 

Part I 

Part II 
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                                    Fig 4. Ineraction through node to node contacts 
 

4.2.1 Penalty contact model for SPH part’s interaction 

Linear spring dashpot model: 
 
 
 

                                     
 
                                   Fig 5. Linear spring dashpot node to node contacts model 
 
Many different contact models have been applied in the particles methods (Vu-Quoc and Zhang 
1999). As well as the widely used spring-dashpot models. More complex models have also been 
proposed. In our practice, we will focused on the two widely used spring-dashpot models. 
 
(Cundall and Strack 1979) model the normal contact through a linear-spring-dashpot system similar to 
the one shown in Fig 5. for a collision between a particles a flat base. 
 
In this system, the repulsive contact force acting on particle due to contact  , is directly proportional 

to the displacement or overlap between particles : 
 

                                                                                                                                  (11) 
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 where   and  is the linear-spring constant or stiffness. If the contact is modeled 
using only this linear-spring, no energy will be consumed and the contact will be ferfectly elastic. In 
reality, some kinetic energy is dissipated in plastic deformation, and/or converted to heat or sound 
energy. To account for those energy losses, a contact damping force based on a dashpot model is 
also included: 
 
     
                                                                                                                                                      (12) 
 
 
The contact damping force is proportional to the relative velocity of the contacting particles, where the 

constant of proportionality  is known as the damping coefficient, 21 vvv   . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        Fig 6. Relative velocity for Linear spring dashpot node to node contacts model 
 
 
 
Non-linear Hertzian-spring-dashpot model: 
 
Another commonly used contact model is: non-linear Hertzian-spring-dashpot model. 
It differs from the LSD model in that the repulsive contact force   is taken to be proportional to the 
inter-particle overlap to the power 3/2: 
 

                                      ,                                             (13)                   
 
Where  is the non-linear Hertzian-spring constant or stiffness. 
Add stiffness contact force  and damping contact force  into acceleration equation (10) we got: 
 
 

                            (14) 
 
 
 
 
Based on spring and mass system, the critical time step for LSD contact model is defined as: 
 

                                                                                                                                                   (15) 
 

 

 

 

 

lc Kmt /2
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Accordingly, the recommended time step from this work was less than:  
 
 

                                                                                                                                                       (16) 
 
 

5 Examples 

Water, air impacting with rigid ring 

3D tank with fluids which has the dimension of 1.0X0.8X0.01 (Fig. 7) was calculated to validate the 
node to node contact in LS-DYNA for multiple SPH parts with high density ratio across the interfaces. 
The fluids in the tank were water and air with air on the top, the density ratio between those two fluids 
is more than 1000. Both water and air were model with SPH particles. A rigid ring modeled with 
cylinder shell impacted the fluids in the tank with the speed of 50 in Y direction. The results from the 
SPH particles were compared with the results from the ALE method with the same dimension and 
parameters (see Fig.9 and Fig.10). 
 
In the model, automatic_ node_ to_surface contacts were used for the interaction between air, water 
particles and rigid shells, a node to node contact was used for the interaction between air particles and 
water particles. The contact between two SPH particles from different parts was detected when the 
distance of two particles is less than SRAD*(sum of smooth lengths from two particles)/2.0. SRAD is 
parameter ranged from 0 to 1.0 and is used to adjust the detecting criteria due to initial penetration.  
 
The standard interaction through SPH interpolation will not work for this case. A proper penalty scale 
factor has to be used for better performance. As show in Fig. 8, a double value of penalty scale factor 
will cause more noises around the interface of the two SPH fluids. The final deformed shape of water 
was comparable with the results from ALE elements (Fig. 9). The velocity historys for the rigid ring 
from both SPH model and ALE model were plotted and compared in Fig. 10, two results were close. 
 
 

                       
 
      
                                                Fig 7. Problem set up of water impact  
 
 

lKm2.0
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                            t=2.7 ms                                                                     t=5.0 ms 
 
 

      
 
                              t=2.7 ms                                                                  t=5.0 ms 
 
                                   Fig 8. Upper: deformation shape for air and water model 
                                            Lower: deformation shape with double value of penalty scale factor 
 

  
 
 
 
                  Fig 9. Final deformation shape from SPH model (left) compared to ALE model (right) 
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                   Fig 10. Impact velocity from SPH model (B) compared to velocity from ALE model (A)  
 

6 Summary 

We present a node to node contact algorithm for the interaction between different SPH parts to avoid 
the instabilities due to large density ratios across the interfaces when using the traditional interaction 
between SPH parts through SPH interpolation. The methods allow the users to select the desired 
amount of contact force between two SPH parts by choosing the desired penalty scale factors 
according to the simulation problem at hand. Some examples are tested to show that the method was 
successfully used to stably simulate multiple fluids with large density contrasts without the above 
described artifacts apparent in standard SPH simulation. In the future, friction (viscosity) model for 
node to node contact may be added for the node to node contact option with friction, also some other 
non-linear contact models may be added. 
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