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Abstract 
 
The computation of fluid forces acting on a rigid or deformable structure constitutes a major problem in 
fluid-structure interaction. However, the majority of numerical tests consists in using two different 
codes to separately solve pressure of the fluid and structural displacements. In this paper, a monolithic 
with an ALE formulation approach is used to implicitly calculate the pressure of an incompressible fluid 
applied to the structure. The projection method proposed by Gresho is used to decouple the velocity 
and pressure. 
 
1. INTRODUCTION 
 
In this paper, we present the algorithm  which allows to compute fluid velocity and pressure using 
explicit time integration for velocity and an implicit method for pressure computation to ensure and 
enforce fluid incompressibility. For the structure an explicit method is performed. For this, we  use a 
finite element method to solve the governing equations for the structure and the Navier-Stokes 
equations using a Lagrangian formulation. In order to solve the governing equations for the fluid in 
Eulerian or Arbitrary Langrangian Eulerian (ALE) formulation, we use the ‘split’ operator described. In 
order to solve fluid-structure interaction problems, we have to compute the pressure acting on the 
structure. The projection method, introduced initially by Chorin and Temam (1968) and proposed by 
Gresho (1990) is implemented to meet this requirement. The numerical example studied in this paper 
shows the interest of an implicit pressure for this type of problems. This paper is organized as follows : 
in the section 2 the fluid governing equations are presented, using a split method, a Lagrangian phase 
where the nonlinear term in the Navier Stokes equations is not taken into account, followed by an 
advection phase.  For validation, we analyze slamming problem, a rigid structure impacting water at 
rest; the new material is compared to the classical MAT_NULL in LSDYNA, Hallquist (1998), for 
sloshing problems Souli et al (2011) 
 
 

2. Eulerian Formulation for Fluid solver 

 
2.1  Lagrangian phase  
 
In the ALE description, an arbitrary referential coordinate is introduced in addition to the Lagrangian 
and Eulerian coordinates. The material derivative with respect to the reference coordinate can be 
described in equation (2.1). Thus substituting the relationship between material time derivative and the 
reference configuration time derivative leads to the ALE equations in (2.1) 
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where iX  is the Lagrangian coordinate, ix  the Eulerian coordinate, iw  is the relative velocity. Let 

denote by v the velocity of the material and by u the velocity of the mesh. In order to simplify the 

equations we introduce the relative velocity uvw  . Thus the governing equations for the ALE 

formulation are given by the following conservation equations, mass equation ( 2,2) and momentum 
equation (2,3) 
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where   is the stress tensor defined by   dIp. where  is the shear stress from the constitutive 

model, and p  the dynamic pressure. 

Note that the Eulerian equations commonly used in fluid mechanics are derived by assuming that the 

velocity of the reference configuration is zero, ,0u  and that the relative velocity between the material 

and the reference configuration is therefore the material velocity, vw . The term in the relative 

velocity in (2.3) is usually referred to as the advective term, and accounts for the transport of material 
past the mesh. It is the additional term in the equations that makes solving the ALE equations much 
more difficult numerically than the Lagrangian equations, where the relative velocity is zero. 
There are two ways to implement the ALE equations, and they correspond to the two approaches 
taken in implementing the Eulerian viewpoint in fluid mechanics. The first way solves the fully coupled 
equations for computational fluid mechanics; this approach used by different authors in CFD leads to 
large linear system to be solved. The alternative approach is referred to as an operator split in the 
literature, where the calculation, for each time step is divided into two phases. First a Lagrangian 
phase is performed, in which the mesh moves with the material, in this phase the changes in velocity  
due to the internal and external forces are calculated. In the Lagrangian formulation the equilibrium 
equations can be describes by equations (2.4) and (2.5) 
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2.2 Advection phase 
 
In the second phase, the transport of mass, momentum and internal energy across the element 
boundaries is computed. This phase may be considered as a ‘re-mapping’ phase. The displaced mesh 
from the Lagrangian phase is remapped into the initial mesh for an Eulerian formulation, or an 
arbitrary distorted mesh for an ALE formulation. 
In this advection phase, we solve a hyperbolic problem, or a transport problem, where the variables 
are density, momentum per unit volume and internal energy per unit volume. Details of the numerical 
method used to solve the equations are described in detail in Aquelet et al (2005), where the Donor 
Cell algorithm, a first order advection method and the Van Leer algorithm, a second order advection 
method  are used. As an example, the equation for mass conservation is: 
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It is not the goal of this paper to describe the different algorithms used to solve the equation (2.6); 
these algorithms have already been described in detail in  Aquelet et al (2005). 
The data necessary for the advection algorithm are the cell volume before and after the Lagrangian 
phase, nodal velocities, nodal masses and volume fluxes across cells. A finite volume method is used 
to solve equation (2.6), the method is described in detail by the authors in  Aquelet et al (2005).  

          
2.3  Pressure Velocity formulation  

 
The velocity solved in the Lagrangian and advection phase is not divergence free. During the 
resolution of the two phases, no condition on the velocity divergence has been enforced. To enforce 
fluid  incompressibility, a projection type method described in detail in Chorin (1968) and  Gresho 
(1998)  is performed at each time step for pressure correction used as a Lagrange multiplier to enforce 
incompressibility condition. The projection method consists in deriving a Poisson equation for pressure 

correction P . In fact, by taking the divergence of the equation (2,5) at each time step t , after time 

discretisation, and using the incompressibility condition (2.4), we obtain : 
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– Projection. As the velocity 
~

v does not yet satisfy the incompressibility condition (2,4), it is projected 

on a divergence free space to get an adequate approximation of the velocity. This is obtained from : 
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– Pressure update. Since V


is the fluid velocity, the pressure P can be given from P . 

PPP nn 1  

3. Numerical results 

 
To illustrate this numerical method, we study the case of a rigid structure impacting a fluid at a velocity 
of 1650mm/sec. This problem is very common in Naval industry is called slamming. For a rigid 
structure, theoretical results are available in the literature. Time history pressure is plotted for both 
ALE formulations, using classical MAT_NULL with an equation of state, and 
MAT_ALE_INCOMPRESSIBLE with no equation of state. The problem set-up is described in figure1. 
We can show from figure 2, that new incompressible material generates less oscillations for pressure 
history that the classical  material MAT_NULL. It has been also observed that time step is higher when 
running the incompressible material than the class MAT_NULL material, since the time step only 
depends on the element size and the fluid velocity and not on the material speed of sound. 
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Figure 1.  Problem description 
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Conclusion 

 
This paper describes the new incompressible material that has been developed in LSDYNA code. This 
material can be used will all LSDYNA capabilities, including contact algorithms, coupling using the 
CONSTRAINED_LAGRANGE_IN_SOLID for fluid structure interaction problems. Users can use this 
material for most CFD applications for Newtonian viscous fluid for laminar flow. It is our goal to extend 
this material for flow turbulence modelling using Large eddy simulation (LES), a mathematical model 
for turbulence used in computational fluid dynamics. 
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Figure 2: Pressure time history for different formulations 
                      Comparison with theory 
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