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INTRODUCTION 
A new advanced eight chain rubber model has recently been implemented in LS-DYNA. 
The material is tailored for polymeric materials. The basic theory is taken from Arruda’s 
thesis from 1993 but it has been enhanced with advanced features such as the Mullins 
effect, viscoelasticity, plasticity and viscoplasticity. 

The Mullins effect is described by two different models: the first one is strain based 
and developed by Boyce in 2004 and the second is energy based and developed by Ogden 
and Roxburgh in 1999. 

The viscoelasticity is based on the general Maxwell theory with up to six Maxwell 
elements (a spring and a dashpot in series). 

There are three different viscoplasticity models implemented: a Norton model with 
two parameters, a G’Sell model with six parameters and a strain hardening model with 
four parameters. The plastic yield strength is based on the eight parameter Hill model. 

 
The material model has been used to simulate a compression test with a rubber 

specimen. The material parameters were obtained from inverse FE analys and parameter 
fitting using LS-OPT and a force-displacement data set. The result shows that this 
material model can predict rubber behaviour inline with experimental results. 

MATHEMATICAL FRAMEWORK 
This model is based on the work done by Arruda and Boyce, i.e. in Arruda’s thesis from 
1993. The eight chain rubber model is based on hyper elasticity and it is formulated by 
using strain invariants. The theory is based on the split of the deformation tensor F  into 
an elastic eF and a plastic part pF . From Arruda’s thesis, the eight chain model only 

utilizes the first invariant ( )etrI C=1  where e
T

ee FFC =  is the right Cauchy Green 

deformation tensor. The strain softening is taken from work done by Boyce 2004, where 
the strain energy used is defined as 
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where the amplified chain stretch is given by ( ) 112 +−=Λ λXc and  
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where 31
2 I=λ , µ  is the shear modulus of the soft domain, N is the number of rigid 

links between crosslinks of the soft domain region, sv  is a saturation parameter and 
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( ) ( )2111 ss vBvAX −+−+=  is a general polynom describing the interaction between the 

soft and the hard phases (Boyce 2004 and Tobin and Mullins 1957).  
 
The compressible behavior is described by the strain energy part: 
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where conv  is a compressibility parameter and J  is the determinant of the deformation 

gradient. 
 The Cauchy stress is computed as: 
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Where 1S and 2S are the second Piola-Kirshhoff stresses based on 1Ψ  and 2Ψ , 
respectively. 

Mullins effect 
Two different models for the Mullins effect are implemented. Firstly the model described 
by Boyce 2004 is a strain driven softening model. The evolution of the softening is 
described by the following equation: 
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where Z is a parameter that characterizes the evolution in sv  with increasing max
cΛ& . The 

parameter ssv  is the saturation value of  sv . Note that max
cΛ& is the maximum of cΛ  from 

the past: 
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It means that the structure evolves with the deformation. The dissipation inequality 
requires that the evolution of the structure is irreversible0≥sv&  (see Boyce 2004). 

 
The second model available for the Mullins effect is based on work done by Ogden and 
Roxburgh 1999. When activated, the strain energy is a standard eight-chain (Arruda-
Boyce) model. That is, the following parameters are automatically set: 1,0 == svZ  and 

1=X . The stress is a multiplicative split between the virgin response and the softening 
parameter: 
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and 1m , 2m  and 3m  are material parameters. maxΨ is the maximum strain energy that has 

been achieved in the loading path. 

Viscoelasticity 
Two viscoelastic models are available. Firstly we have a model where the viscoelasticity 
is based on a generalized Maxwell model described in Holzapfel (2000). The evolution 
equation for the in-equilibrium stresses has the form 
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where α is the number of viscoelastic terms (max 6). The evolution is integrated and 
solved for each time step and the total second Piola-Kirshhoff stress is given as  
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Secondly we have added viscoelastic model whose evolution equation is based on Simo 
and Hughes (2000) and renders 
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where α  is the number of prony terms (max 6), 0,0 >≥ αα τγ . The equation is 

integrated and solved by a recursion scheme and the total second Piola-Kirchhoff stress is 
given by 
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where 10 <≤ ∞γ  and 
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When the second Piola-Kirchhoff stress has been calculated the total Cauchy stress is 
obtain by a standard push forward operation: 
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Plasticity and Viscoplasticity 
The plastic relation is based on the general Hills’ yield criterion 
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and the hardening is either based on a load curve ID (-YLD0) or an extended Voce 
hardening 
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For the viscoplastic phenomenon, we simply add one evolution equation for the effective 
plastic strain rate. Three different evolution laws are available. 

• A simple Norton model with two parameters and where the effective plastic strain 
rate is given by: 
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 The yield criterion 0≤f gives the final equation to solve 
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where vpε& is the effective plastic strain rate and 1K  and 1S  are viscoplastic 

material parameters. 
 

• A G’Sell model with six parameters and where the effective plastic strain rate is 
given by: 
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 The yield criterion gives the final equation to solve: 
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 where 32211 ,,,, KSKSK  and 3S  are viscoplastic material parameters. 

• A strain hardening model with four parameters and where the effective plastic 
strain rate is given by: 
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The yield criterion gives the final equation to solve: 

( ) 0
1

1

2

2

1 =














+
−

S

S
eff

vp

K
Kf

ε
ε&

. 

Kinematic hardening 

The kinematic hardening is based on the effective plastic strain whereas the plastic 
deformation is obtained from the plastic rate of deformation 
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where the rate of the plastic deformation gradient is given from the definition of the 
plastic velocity gradient: 

pppppp LFFFFL =⇒= − &&1 . 

Without loss of generality we assume that the antisymmetric part of the velocity gradient 
is included in the elastic deformation. The update formula for the plastic deformation 
therefore renders 
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The back stress is now calculated similar to the Cauchy stress above but without the 
softening factors: 
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where p
T
pp FFC = , ( )ppI Ctr=  and pµ is a hardening material parameter. The total 

Piola-Kirschhoff stress is now given by βSS −=*  and the total stress is given by a 

standard push forward operation with the elastic deformation gradient eF . 

EXPERIMENTS 
The investigated rubber material was Trelleborg Industrial Rubber, material # 9038703, 
with hardness 72±5 Shore. A series of tests was conducted where cylindrical test 
specimens were subjected to axial and radial compression tests, shear tests, and combined 
axial compression and shear tests. Only the axial compression tests are considered in the 
present study. 
 
The compression specimen according to ISO 7743:1989 consists of a cylinder with a 
diameter of 30 mm and a height of 12.5 mm. The cylinder is compress between two 
parallel highly polished flat metal plates. In order to accomplish an approximate 
homogeneous state of deformation the flat surfaces were lubricated with Teflon.  
 
Each specimen was first loaded and unloaded to 50% compression (λ/λ0=-0.5) in ten 
cycles. A loading speed of 400 mm/min was applied in this pre-loading, and it was found 
that the effect from the loading speed on the subsequent test results could be neglected. 
 
The subsequent axial compression tests were conducted at three loading speeds, i.e. 40 
mm/min, 80 mm/min, and 400 mm/min. Each axial compression test was repeated five 
times. A typical load deformation test result is shown in Figure 1. 
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Figure 1: Cyclic load of rubber specimen. Loading speed 400 mm / min. 
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PARAMETER IDENTIFICATION AND VALIDATION 
This model was calibrated against a real compression test using LS-DYNA and the 
optimization software LS-OPT v.4.1. As described in the previous section the specimen 
where compressed 50%, which corresponds to a displacement of 5.7 mm and a 
compression force of 1.0 kN.  
 
The simulation and optimization where done on a 2D axi-symmetric model with two 
rigid plates and one rubber specimen. The rubber specimen with geometry 13.8x12.7 mm 
(height x length) in its initial state, were compressed into 18.5x7.0 mm which can be seen 
in Figure 2. The two plates (not shown) were treated with Teflon to minimize the friction 
between the plate and the rubber. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The initial configuration to the left and the final compressed state to the left. 
 
The behaviour of the rubber specimen where assumed to exclude viscoelastic, 
viscoplastic and plastic phenomena. Seven parameters were chosen for the optimization: 
the bulk modulus, the shear modulus, the number of cross-links, the static friction 
between the plates and the rubber, and the three parameters that are included in the 
Ogden-Roxburg Mullins model. The optimal configuration where achieved with LS-OPT  
in 14 iterations while trying to minimize the experimental force required to compress the 
specimen with the force calculated from LS-DYNA. The optimal parameters can be seen 
in Table 1. 
 

Variable Value 
Bulk modulus (K) 1.81 GPa 
Shear modulus (µ ) 1.15 MPa 
Number of crosslinks (N) 32 
Static friction coefficient 0.01 
Mullins parameter 1 (M1) 1.35 
Mullins parameter 2 (M2) 0.10 
Mullins parameter 3 (M3) 0.72 

 
Table 1: Optimum set of parameters for the rubber compression test. 
 
The force-displacement plot in Figure 3 shows a good agreement with the experimental 
values. Note that the experimental values are scaled down to fit the axi-symmetric model 
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(thereof the much lower forces than in Figure 1). The last half of the loading path fits 
very well with the experiment and the unloading path is almost spot on. However, the 
current model configuration is unable to capture the effect early in the load path, which 
discrepancy may be corrected by activate the strain driven Boyce Mullins effect and 
viscoelasticty. 
      

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7

Compression [mm]

Fo
rc

e 
[N

]

Simulation Experiment

 
 

Figure 3: Force-displacement curves from the experimental test and the LS-DYNA 
simulation. The experimental values are scaled to fit the axi-symmetric simulation model. 
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