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Abstract 
 
This paper presents a coupling of LS-DYNA XFEM shell method [30] and GISSMO damage model for dynamic ductile failure in shell 
structures. The XFEM shell formulation adopts the finite element continuous-discontinuous approach with the phantom-node 
technique [17] employed to incorporate velocity discontinuities in standard shell finite element formulations. The generalized 
incremental stress-state dependent damage model (GISSMO) adds damage and failure to most material models in LS-DYNA that do 
not allow failure. With the stress-triaxiality dependent failure criterion provided in GISSMO model, XFEM can better simulate 
material failure and crack propagation in mixed modes and under more complicated loading conditions. The option of element-size 
dependent regularization factor in GISSMO model removes the strain localization existing in the standard continuum damage model 
and suppresses the element-size sensitivity of ductile fracture, which is  similar to the regularization zone approach in our original 
XFEM shell method for ductile fracture [30-32]. Unlike element erosion, when an element fails after certain number of integration 
points reach failure criterion, a crack (discontinuity)is inserted into the element with its direction depending on the stress state or 
other propagation option, and the element becomes an XFEM element comprised of two phantom elements. XFEM formulation allows 
crack propagation across elements without the sensitivity on mesh discretization and maintains the conservations of mass and 
momentum. Several numerical benchmarks and examples are tested using the explicit dynamics analysis to demonstrate the 
effectiveness and accuracy of the method described in this paper. 
 

 
1. Introduction 

 
Failure and fracture analyses in metal materials are increasingly important in many industries. For the 
automotive industry, lightweight materials such as the high-strength steel have a direct impact on driving 
dynamics, fuel consumption and agility. While the structure made of high-strength steel offers superior stiffness 
with reduced weight, material failure analysis in high-strength steel structure becomes critical for 
crashworthiness simulation in modern lightweight vehicle design. In contrast to brittle fracture in concretes and 
rocks, the ductile failure in metals undergoes a certain amount of plastic deformation before a macro-crack is 
evident. Microscopically, this ductile damage phenomenon is associated with voids nucleation, growth and 
coalescence under high and moderate stress triaxiality [1]. Macroscopically, the ductile damage is represented 
by the progressive degradation of material as a consequence of the growth of microstructural defects and can be 
modeled phenomenologically using the continuum damage mechanics [2,3]. When the coalescence of some 
microstructural defects creates the macro-crack, the discrete fracture becomes dominant as the ultimate result of 
the material degradation process [3] in ductile fracture. 
Standard numerical simulations using the continuum damage models are known to be susceptible to the 
pathological localization of deformation. To regularize the non-unique solution in damage-induced strain 
localization problems, several integral-type and gradient-type of nonlocal damage models [4-6] and phase field 
model [7] based on regularized variational formulation were developed.  
When the coalescence of some microstructural defects creates the macro-crack, the discrete fracture becomes 
dominant and rupture occurs in ductile materials. Unfortunately, the numerical methods based on a pure 
nonlocal damage model are inadequate to describe such kinematic discontinuity of the displacement field in a 
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continuous setting [8]. To release the excessive straining in the damage zone and achieve a better representation 
of the entire failure process, many combined continuous-discontinuous approaches [8,9,10-13] have been 
developed. While the nonlocal damage model is used to describe the material degradation, the discontinuous 
enrichment [14-16] typically used in fracture mechanics are usually considered to model the discrete crack. 
Among those discontinuous enrichment methods, the phantom-node approach [17] in extended finite element 
method (XFEM) [18, 19] is attractive to model the ductile fracture in plate and shell structures. The phantom-
node approach describes a crack with two standard overlapping elements, therefore, it can be directly applied to 
any existing finite element code, for example, the 4-noded element using a fully integrated shear deformable 
shell formulation [21, 22].  
While there are several constitutive models with continuum damage mechanics in LS-DYNA, many material 
laws for metallic materials do not allow damage failure. The generalized incremental stress-state dependent 
damage model (GISSMO) [22] provides an easy way to add continuum damage mechanics to any constitutive 
models for ductile materials. Its failure criterion can be function of stress state, making it suitable for simulation 
of ductile fracture in mixed modes. The GISSMO model also has an option of element-size dependent 
regularization factor, which can be used to minimize the strain localization problem in ductile fracture. 
Although GISSMO model is a phenomenological constitutive law and its parameters need many experiments 
and numerical calibrations to obtain, we think it is worth of adding GISSMO damage model in LS-DYNA 
XFEM formulations for ductile fracture.      
In this paper, we present LS-DYNA XFEM shell formulations for ductile fracture using GISSMO damage 
model as failure criterion. The rest of the paper is organized as follows: Section 2 briefly summaries the XFEM 
shell formulations in LS-DYNA and provides the computational flow and keyword format to use XFEM. 
Section 3 describes the keywords for GISSMO damage model. Three numerical examples are given in Section 
4, and finally the conclusions are made in Section 5. 

 
2. LS-DYNA XFEM Shell Formulations 

 
The XFEM phantom-node approach has been applied to three finite element shell formulations in LS-DYNA, 
the one-point integrated Belytschko-Lin-Tsay shell with hourglass control [23], the four-node fully integrated 
shear deformable shell formulation [21, 22] with assumed strain interpolants [24, 25] for alleviating the shear 
locking and for enhancing the in-plane bending behavior, and recently the discrete Kirchoff triangular element 
[22]. Through-the-thickness, element-wise discontinuous velocity and angular velocity fields are introduced to 
the standard shell element formulation using the XFEM phantom-node approach to model the internal 
discontinuity in a shell element when fracture occurs in this element.   
Unlike the brittle fracture where material failure is controlled by stress-based criterion, such as the maximum 
tensile strength in Mode-I fracture, the ductile failure is determined by strain-based criterion. With a standard 
plastic constitutive model, the transition from continuous to discontinuous state can be triggered when a critical 
plastic strain threshold is reached. In this case, a modified cohesive zone model is applied to the newly activated 
crack surface to account for the energy released from the crack surface. With the continuum damage model, the 
transition from damage to crack is triggered when the material is fully degraded. In this scenario, a traction-free 
crack [15,20] is introduced to the numerical model as the damage variable is close to one. These local material 
models cannot be directly used for numerical simulations of ductile fracture, nonlocal processing procedure 
needs to be applied to remove the mesh sensitivity problem. The regularization of the failure strain or the 
effective plastic strain are proposed and implemented in LS-DYNA [30-32]. 
Detailed theories on these element formulations and phantom-node XFEM can be found in relevant literatures 
and are omitted in this paper. 
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2.1 Computational flow chart  
The computational procedure of the phantom-node XFEM is given in the following.   

 
1. Check crack initiation/propagation. 

1.1 Compute non-local effective plastic strain in candidate elements. 

1.2 Compute damage variable if continuous damage model is used. 

1.3 If damage variable exceeds critical value, or effective plastic strain reaches criterion, active XFEM. 

1.3.1 For crack initiation, crack direction determined by first principal strain; for crack 
propagation, crack direction determined by damage/plastic strain center. Calculate crack line 
in the element in initial configuration. 

1.3.2 Add phantom nodes; replace the original shell element with two overlapping phantom 
elements which are comprised of real nodes and phantom nodes but have same element 
formulation as the replaced element. 

1.3.3 Calculate lumped mass for added phantom nodes and update lumped mass for the real nodes. 

1.3.4 Constrain the phantom nodes on the crack tip edge. 

2. Update kinetical variables on real nodes and phantom nodes if any. 

3. Advance one time-step. 

3.1 Set nodal forces to zero. 

3.2 Apply external load, including contact force. 

4. Loop through regular finite elements and phantom elements. 

4.1 Calculate strain rate at Gauss points. Update strain components. 

4.2 Update stress components using continuous damage constitutive law. 

4.3 Calculate nodal forces at real nodes for all elements, and phantom nodes if it’s a phantom element. 

4.4 If in a regular element the damage variable/effective plastic strain at any Gauss point exceeds the 
critical value, mark this element as an XFEM candidate. 

5. Go to 1. 

2.2 Keyword for XFEM shells 
XFEM shells can be activated using keyword *SECTION_SHELL. The keyword format is as follows 

*SECTION_SHELL_{XFEM}  



16th International LS-DYNA® Users Conference Simulation 
 

June 10-11, 2020  4 

 

 
ELFORM = 52 for 2D plain strain 
                 = 54 for shell 
MCID: Material ID for cohesive law 
BASELM =   2 for base shell element type 2  (default for shell)       = 13 for 2D plain strain (default for 2D) 
                 = 16 for base shell element type 16 
                 = 17 for DKT shell element type 17 
DOMINT:  Option for domain integration for XFEM 
                = 0 phantom element integration (default) 
                = 1 subdomain integration (not available in shell XFEM) 
FAILCR: Failure criterion 
                =  0 GISSMO damage model 
                =  1 maximum tensile strength (value given in cohesive law) 
                = -1 critical effective plastic strain 
                = -2 crack length dependent EPS 
                = -3 continuum damage model 
PROPCR: Option for crack propagation direction 
                = 0 first principal total strain direction 
                = 2 center of effective plastic strain 
                = 3 damage center 
FS:  Failure strain/Failure critical value  
LS:  Length scale for strain regularization, >0 actives strain regularization, available for FAILCR=-1 
NC: Number of cracks allowed. NC<0 (or NC=-99) activates element erosion for failed XFEM elements.  

When FAILCR=-2, a crack-length dependent critical effective plastic strain is defined as 
0 0 1min(1.0,  / ) ( )crit cl lε ε ε ε= − ∗ −         (1) 

where 0ε  is initial failure plastic strain FS, 1ε  is final failure plastic strain FS1, cl  is crack length LC at final 
plastic strain and l is crack length. 
 

3. GISSMO Damage Model 
 
With continuum damage models or standard plastic constitutive models, the finite element simulations using 
local failure criterion are susceptable to the mesh sensitivity problem. To avoid the pathological localization of 
deformation and damage growth in XFEM shell computation, the integral-type of nonlocal modeling [4] is 
adopted in LS-DYNA XFEM shell formulation for ductile fracture [30-32]. However, there are many material 
laws in LS-DYNA that do not allow damage and failure. To remedy this drawback, GISSMO damage model 
has been implemented in LS-DYNA by DYNAmore. Activating GISSMO model for XFEM failure criterion is 
a natural way to access the vast library of material laws in the form of continuum damage model. 
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3.1 Keywords for GISSMO damage model 
In LS-DYNA, there are two keywords to add the GISSMO damage model to any material laws that do not have 
damage failure: the old keyword *MAT_ADD_EROSION and new keyword 
*MAT_ADD_DAMAGE_GISSMO. We will briefly describe the two keywords in this section and the theory 
and details of all the parameters can be found in the relevant literatures and LS-DYNA material manual.  
*MAT_ADD_EROSION 
Card 1 1 2 3 4 5 6 7 8 

Variable MID EXCL MXPRES MNEPS EFFEPS VOLEPS NUMFIP NCS 

Type A8 F F F F F F F 

Card 3 1 2 3 4 5 6 7 8 

Variable IDAM DMGTYP LCSDG ECRIT DMGEXP DCRIT FADEXP LCREGD 

Type I F I F F F F F 

Card 4 1 2 3 4 5 6 7 8 

Variable SIZFLG REFSZ NAHSV LCSRS SHRF BIAXF   

Type F F I F F F   

 
*MAT_ADD_DAMAGE_GISSMO 
Card 1 1 2 3 4 5 6 7 8 

Variable MID  DTYP REFSZ NUMFIP    

Type A8  F F F    

Card 2 1 2 3 4 5 6 7 8 

Variable LCSDG ECRIT DMGEXP DCRIT FADEXP LCREGD   

Type F F I F F F   

Card 3 1 2 3 4 5 6 7 8 

Variable LCSRS SHRF BIAXF LCDLIM MIDFAIL HISVN   

Type A8 F I F F F   

 
MID: Material identification for which this erosion definition applies. 
IDAM: Flag for damage model (only in *MAT_ADD_EROSION) 
             = 1 for GISSMO damage model    
LCSDG: Load curve ID or Table ID. Load curve defines equivalent plastic strain to failure vs. triaxiality. Table 
defines for each Lode parameter value (between -1 and 1) a load curve ID giving the equivalent plastic strain to 
failure vs. triaxiality for that Lode parameter value.  
LCREGD: Load curve ID or Table ID defining element size dependent regularization factors for equivalent 
plastic strain to failure. 
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3.2 Stress-triaxiality dependent failure strain 
Usually the failure of ductile materials occurs at different failure strain in different failure modes and the failure 
modes are defined by the stress state. This phenomenon can be described by the equivalent plastic strain at 
failure as a function of stress triaxiality.  A typical stress-triaxiality dependent effective plastic strain at failure 
for shell structure can be demonstrated as the curve in Figure 1. From the curve, we can see the failure strain of 
ductile shell in tension mode is the smallest, followed by that of shear mode (stress triaxiality is zero) and the 
material is most difficult to fail in compression mode.   
 

 
Figure 1. Typical failure curve for metal sheet, modeled with shell elements 

 
 4. Numerical examples 

 
In this section, two benchmarks and one numerical example are analyzed to study the performance of present 
method in the shell fracture analysis. Unless otherwise specified, dimensionless unit system is adopted in this 
paper. Since we do not have the data of element-size dependent regularization factor for GISSMO model at the 
time of writing this paper, we will not test its performance at this time.            

4.1 Tension coupon test 
The first benchmark is the tension coupon test. The tension coupon is a rectangular plate of 203.2mm long by 
44.45mm width and a thickness of 1.7272mm, with a reduced middle region of 25.4mm width, as shown in 
Figure 2. The left side of the coupon is fixed, and the right side is applied a pulling velocity gradually increasing 
from 0 to 0.1mm/ms at 1.0ms and remaining at the speed. The simulation time is 30ms. The material is steel 
with a density of  kg/mm3, Young’s modulus of 210GPa, Possion’s ratio of 0.3 and nonlinear strain 
hardening curve (initial yield stress is 346MPa) and is modelled by 
*MAT_PIECEWISE_LINEAR_PLASTICITY. The GISSMO model has a stress triaxiality dependent failure 
strain similar as shown in Figure 1. 
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Figure 2. Four mesh refinements of the tension coupon 

The coupon is discretized by four meshes with different numbers of elements, as shown in Figure 2. This 
tension coupon problem is solved by both FEM with element erosion and XFEM. 

Both the FEM and XFEM give similar results in the deformation of the coupon. With the increased pulling, the 
coupon undergoes plastic deformation in the narrowed region and develops necking in the middle of the 
coupon. The crack initiates inside the coupon at the center and propagates vertically. Figure 3 shows the 
comparison of the section force histories obtained by the four meshes and two numerical methods. From the 
plots, we can see the solution seems to converge with the mesh refinement. Except for the result given by the 
coarsest mesh, Mesh 1, the force responses from the other three meshes are very close, indicating that the mesh 
size effect does not exist in this tension test, even though there is no element-size dependent regularization 
factor in the GISSMO model used in the simulation. The behavior is the same for both FEM and XFEM. The 
reason is that the crack initiates in the middle of the coupon, which is in a biaxial stress state. The biaxial 
stresses tend to be less sensitive to mesh-size effect, as long as the mesh is not too coarse.  

  
(a) FEM                                                            (b) XFEM 

Figure 3. Comparison of section force histories 

As to the crack pattern, both the FEM and XFEM give similar results too. The crack initiates at the center of the 
coupon and propagates vertically outwards to the upper and lower boundaries, resulting in a vertical crack in the 

Mesh 1: 520 elements 

Mesh 4: 27044 elements 

Mesh 3: 6952 elements 

Mesh 2: 2008 elements 
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middle of the coupon. Figure 4 shows the crack patterns given by XFEM in both initial (undeformed) and final 
(deformed) configuration, which are very consistent across different mesh refinements. 
 

           
 

(a) Initial configuration                               (b) Final configuration 
Figure 4. Crack patterns in initial and final configurations by XFEM 

4.2 Shear coupon test  
In the second benchmark, a shear coupon test is analyzed. The coupon with a length of 114.3mm and a width of 
25.4mm has two U-shape notches at  deeply cut into the coupon as shown in Figure 5, resulting in a small 
region roughly represented by a rectangle of 4.9mm by 1.5mm (green region). When the coupon is applied 
uniaxial tensile loading, the green region will be in shear mode. 

 

 
Figure 5. Shear coupon under stretching loading 

The coupon is modelled by two parts. The small shear mode part consists of 31 elements and has a thickness of 
1.3208mm. The rest of the coupon has a thickness of 1.7272mm and is discretized with 11478 elements. The 
left side of the coupon is fixed, and the right side is applied a pulling velocity gradually increasing from 0 to 
0.1mm/ms at 1.0ms and remaining at the speed. The simulation time is 12ms. The material is steel with a 
density of kg/mm3, Young’s modulus of 210GPa, Possion’s ratio of 0.3 and nonlinear strain 
hardening curve (initial yield stress is 346MPa) and is modelled by 
*MAT_PIECEWISE_LINEAR_PLASTICITY. The GISSMO model has a stress triaxiality dependent failure 
strain as shown in Figure 1. This problem is solved by both FEM with element erosion and XFEM. 
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(a) FEM with Element Erosion 

 
(b) XFEM 

Figure 6. Crack patterns obtained by FEM and XFEM 

The crack patterns given by FEM and XFEM for the shear coupon test are very similar, as shown in Figure 6. 
The cracks initiate at the tips of the U-shaped notches, propagate inwards and merge into one crack. The section 
forces obtained by FEM and XFEM are agreeable too, as shown in Figure 7. 

 
Figure 7. Comparison of section force histories by FEM and XFEM 

4.3 Asymmetric V-notched specimen under tensile loading 
In this numerical example, the fracture of an asymmetric V-notched specimen under tensile loading is studied. 
The model set up of the specimen is illustrated in Figure 8. The specimen has a length of 210mm, a width of 
50mm and a thickness of 1.6mm. The two V-shaped notches with  opening are located 7mm away from the 
middle of the specimen separately, forming an angle of about   with the vertical line. The specimen is 
clamped on the left end (green region) and applied a pulling velocity of 10mm/ms at the right end (yellow 
region). The material of the specimen is steel with a density of kg/mm3, Young’s modulus of 
210GPa, Possion’s ratio of 0.3 and nonlinear strain hardening curve (initial yield stress is 346MPa).   
The specimen has a mesh discretization of 8878 elements, as shown in Figure 8. The material is modelled by 
*MAT_PIECEWISE_LINEAR_PLASTICITY. The GISSMO model has a stress triaxiality dependent failure 
strain as shown in Figure 1. This numerical example is solved by both FEM with element erosion and XFEM, 
with a simulation time of 1.0ms. 
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Figure 8. Asymmetric V-notched specimen under tensile loading 

Figure 9 shows the crack patterns given by FEM and XFEM. We can see from the crack patterns that the 
fracture of the specimen is in mode I (tension mode) at the beginning stage, illustrated by the two vertical cracks 
originating from the V-shaped notches. Then the fracture mode changes to Mode II (shear mode) and the two 
vertical cracks merge into one crack. However, the crack patterns in shear mode given by FEM and XFEM are 
quite different. The shear crack given by FEM has an angle of about  while the shear crack given by XFEM 
has an angle close to  which agrees with experimental result. There are two reasons that the FEM yields 
erroneous result in shear mode: The first is that the element erosion changes the physical domain of the problem 
and the second is that the element erosion causes loss of conservations of mass and momentum. The difference 
between FEM and XFEM results also presents in the comparison of the section force histories as shown in 
Figure 10. FEM with element erosion underestimates the section force right after the cracks initiate.    
 

 
 

(a) FEM with Element Erosion 

 
 

(b) XFEM 
 

Figure 9. Crack patterns obtained by FEM and XFEM 
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Figure 10. Comparison of section force histories 

 
5. Conclusions 

 
GISSMO damage model is added to LS-DYNA XFEM shell formulations for material failure and crack 
propagation in ductile metalic shell structures. GISSMO model not only provides continuum damage mechanics 
to a variety of constitutive models in LS-DYNA that do not have damage failure, its stress-triaxiality dependent 
failure criterion lets XFEM formulations better simulate ductile fracture in mixed modes and under more 
complicated loading conditions. The effectiveness of its element-size dependent regularization factor in 
suppressing strain localization problem in ductile failure waits to be investigated. The numerical results in this 
study indicate that LS-DYNA XFEM shell formulations with GISSMO damage model can simulate ductile 
fracture in different modes with ease and provides the way to access more constitutive models in the framework 
of continuum damage mechanics.   
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