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Abstract  
 
Topology optimization (TO) algorithms generate novel concepts to inspire and propel the design iteration process. LS-TaSC® is an 
industrial tool that implements TO algorithms and generates designs optimized for performance objectives such as maximum stiffness 
or energy absorption, under specified constraints e.g. allowed mass fraction of material in the design space. A multi-objective design 
exploration framework based on LS-OPT® and LS-TaSC to generate designs is already available. The framework yields a Pareto set of 
designs by varying a parameter representing the relative preference of the user among the different objectives. A challenge persists as 
to how potentially large datasets of designs, generated using such an approach, can be reviewed efficiently by a designer. In this paper, 
we propose a method to identify a few representative design prototypes, which can be more easily reviewed by a designer. More 
concretely, the approach identifies classes of designs that look significantly different from a geometric point of view. For this purpose, 
we encode the information about the geometry using a voxel representation of the design. Subsequently, we use Principal Component 
Analysis (PCA), to reduce the high dimensionality of the representation, and extract features that encapsulate the geometric variation 
in the set of designs. Design prototypes are derived based on clustering algorithms using weights of principal components as features. 
To evaluate the proposed approach, we consider a solid beam model that is optimized for high stiffness under a static load case and 
high-energy absorption in a crash load case. Similar design problems are especially common in the car body design. We generate a 
Pareto set of designs for this test case and identify design prototypes. An interesting application of this method is to find designs with 
similar geometric appearance but very different performances. This can help us to estimate the robustness of a design. By helping in 
design exploration and selection, the proposed approach shows promise in large-scale industrial applications. 
 
 
 
1 Introduction 
 
Design optimization problems with multiple, possibly conflicting objectives, can result in a large set of feasible 
designs, called a Pareto-optimal set. The set consists of non-dominated solutions. This means that no other 
solution is better in all objectives when compared to such a solution. In structural optimization, Topology 
Optimization (TO) [1]–[6] is a promising tool to optimize the material layout. For structural problems with 
multiple load cases, methods exist to include user preferences regarding their relative importance [7], [8]. From 
the Pareto set, a few solutions can be selected for further review [9], as one cannot review all the designs due to 
limited time and computational resources. An exemplary selection method is any of the clustering techniques 
known in the field of machine learning. 
 
In this work, we intend to use geometric similarity to select a few representative designs from the Pareto set. 
Quantifying the design similarity is a challenging problem that has been, e.g., the subject of research in the field 
of 3D object classification [10]. The challenges associated with this task are identifying a representation for the 
design, and an appropriate metric to quantify geometrical differences. We discuss here a data-driven method to 
construct so-called similarity coordinates for designs so that close distances in this coordinate space represent 
geometric similarity. Using the coordinates as features, a representative design is then picked from a group of 
design clusters in the Pareto front using LS-OPT and LS-TaSC frameworks. 
 
The authors gratefully acknowledge the financial support from Honda Research Institute Europe (HRI-EU) GmbH, Germany. We also thank Michael 
Gienger (HRI-EU) for his valuable comments. 
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As discussed, to generate similarity coordinates, we need to decide on a representation of the design and an 
appropriate metric to quantify geometrical differences. For this purpose, we use a simple voxel representation of 
designs. However, the high dimensionality of the representation makes it difficult to identify similar designs using 
the Euclidean metric. This is because of the so-called “curse of dimensionality”, a phenomenon where for data 
with a large number of features, pairs of samples tend to have little differences if the Euclidean metric is used. 
This makes it difficult to find meaningful clusters in the data. To alleviate this problem, we can use a 
dimensionality reduction method such as Principal Component Analysis (PCA), a common technique used in data 
mining [11], to reduce the voxel representation to a much lower-dimensional representation. PCA linearly maps 
designs to new coordinates that reflect the variance in data. 
 
In this paper, to illustrate our method, we use PCA to capture geometric differences.  Other dimensionality 
reduction methods such as t-SNE [12], UMAP [13], Autoencoders [14] can be used instead of PCA, but the 
interpretation of the coordinates will change accordingly. The new coordinates, referred to as similarity 
coordinates in this paper, are used to find clusters of designs that are geometrically similar. Furthermore, design 
prototypes are found for each cluster. 
 
In Section 2, we describe briefly a method to generate a Pareto front of designs by sampling load case preferences. 
Given a set of designs, we propose a method to identify prototypes based on geometric similarity in Section 2. 
The proposed method is demonstrated using a Pareto set of designs in Section 4. We conclude the discussion in 
Section 5. 
  
 
2 Pareto front generation using load case preferences 

Given boundary conditions and constraints for a finite element model, TO optimizes material layout for objectives 
such as structural compliance for static load cases, energy absorption for crash load cases [15]–[17]. Scaled 
Energy Weighting Hybrid Cellular Automata (SEW-HCA) [7] is a multi-disciplinary TO method that can 
concurrently optimize for multiple objectives. The method allows the specification of the relative user preference 
for each objective, with each choice leading to an optimized design. In this paper, SEW-HCA-inspired SEW-
LS-TaSC is used to generate a Pareto front with two competing objectives: minimization of structural compliance 
for a static load case, and maximization of energy absorption for a crash load case. 
 
In LS-OPT  6.0 workflow (Figure 1), a stage is created to use LS-TaSC 4.0, and generate designs using SEW-
LS-TaSC as in [8]. Using a sampling method, different preferences for load cases are generated, with each 
preference leading to a design in the Pareto set. The setting “D-Optimal” with a linear polynomial model is used 
for sampling user preferences each of which are used to generate a design in the stage “LSTASC”. After this 
stage, objectives for the two load cases are calculated for each optimized design using LS-DYNA® solver in stages 
“opt_LC1” and “opt_LC2” which completes the design generation and performance evaluation step. An 
additional stage “Prototyping”, which includes our proposed method to identify design prototypes, is explained 
in the next section. 

3 Prototype identification in Pareto set 

The “Prototyping” stage, as shown in ., quantifies geometrical differences in Pareto set using a similarity 
coordinate, which is subsequently used for clustering designs to identify prototypes. This stage process each finite 
element model using a Python script which can be defined in the setting “User-Defined Postprocessor”. In this 
setting, the command specifies the path to a Python binary followed by the script used to process each design.  
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In this stage, for each finite element model, two user-defined responses, similarity coordinate “s”, and prototype 
flag “p” are calculated. The prototype flag is calculated such that 𝑝𝑝 = 1 for prototypes, and 𝑝𝑝 = 0 otherwise. 
This calculation includes three major steps: (i) conversion of optimized finite element models to voxel 
representation; (ii) mapping voxel representation to similarity coordinates, a lower-dimensional representation; 
and (iii) clustering of designs based on similarity coordinates followed by prototype identification. The steps are 
described in detail as follows. 
 

 
Figure 1: LS-OPT workflow with optimization in the stage “LSTASC”, performance evaluation for crash and static load cases in stages “opt_LC1” 
and “opt_LC2” respectively, and prototype identification in stage “Prototyping”. The stages “Build Metamodels” and “Constraints” are not used in 
this work. 

 

3.1 Voxelization of finite element models 
Conversion of optimized finite element models to a voxel representation is an important pre-processing step in 
our method. Although voxels are a space-consuming representation, we use it here owing to its simplicity. For 
converting into voxels, we use a Python script to extract mesh information from LS-DYNA keyword files. The 
voxel representation is a binary vector (a vector of zeros and ones), where each component, called voxel hereafter, 
is associated with an element in the finite element model. Elements with a minimum threshold density (relative 
density > 1% in this paper) are assigned a voxel value 1, otherwise with a value 0. The ordering of elements is 
not important as long as it is consistent across all finite element models. Since we know the location of each 
element, and hence the voxel, we can construct the geometry in 3D space from the voxel representation. 

3.2 Similarity coordinates 
As discussed previously, we convert the voxel representation to similarity coordinates using a dimensionality 
reduction technique. In this paper, we propose to use a simple dimensionality reduction method called Principal 
Component Analysis (PCA) [18], [19]. It linearly maps the voxel representation into a new coordinate system, 
with basis vectors called principal components, such that data has the highest variance in the first principal 
component. The variance decreases as one moves down the order of components. Since we use PCA on the voxel 
representation, each principal component can be interpreted as a design. One can represent any of the designs in 
the dataset as a linear combination of the principal components. The similarity coordinates are the weights of the 
corresponding principal components in the linear combination. For the design set considered in this paper, a single 
component is found to be sufficient to capture the geometric variation. Furthermore, it allows visualization of the 
Pareto front along with other objectives. For a more complex data set, more sophisticated data reduction 
techniques [12]–[14] could be explored. 
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3.3 Clustering and identifying prototypes 
In machine learning, a subset of designs can be selected using clustering methods on one or more of the design 
features. For example, designs in the Pareto set can be clustered using the similarity coordinate as a feature, 
leading to geometrically dissimilar prototypes. For clustering, we use K-Means, a simple and computationally 
cheap algorithm, but the expected number of clusters needs to be provided. In a Pareto front, where the clusters 
may not be clearly defined, K-Means is a convenient method to identify sub-regions. The medoid, a point with 
the least mean distance to other points within the cluster, serves as a prototype [14], [20] for each cluster. 

4 Results 

4.1 Test case generation 
As a test case, we consider a simply supported beam of dimensions (600 mm x 50 mm x 50 mm) modeled using 
12,000 solid elements. Using SEW-LS-TaSC, the model is optimized concurrently for static and crash load cases 
(Figure 2). The crash load is defined by a prescribed velocity of 1000 mm/sec, and the static load by a force of 
1000 N. The goal is to minimize structural compliance for the static load and maximize energy absorption for the 
crash load. The optimization parameters used are a volume fraction of 0.3 and a move limit of 0.1. The method 
for sampling user preferences for each objective and generating the Pareto front is as discussed in Section 2. 

 
Figure 2: Static and crash load-case acting on a simply supported beam. 

4.2 Pareto front and similarity coordinates 
By sampling the relative preference for each of the two load cases, different designs are obtained. Using PCA, 
the voxel representation of each design is converted to a similarity coordinate, which is associated with the first 
principal component as described in Section 3.2. Figure 3 shows the Pareto front with absorbed energy for crash 
load case (Ic1_IE), stored energy for static load case (Ic2_IE), and the similarity coordinate “s”. Note that “s” 
changes monotonically as the user preferences change along the Pareto front. This indicates that geometrical 
features change gradually with the user preference. As expected, with improvement in energy absorption for the 
crash load case, there is an increase of structural compliance for the static load case. 

4.3 Prototypes based on geometric similarity 
Using K-Means as the clustering method, three clusters (Figure 4A) are identified based on “s”, with prototypes 
found for each cluster. Prototype 3 is the thinnest structure capable of absorbing maximum energy (Ic1_IE) under 
crash load compared to other prototypes. As expected, Prototype 1 has the highest stiffness among prototypes. 
From a geometrical point of view, the edges become progressively thinner through prototypes 1-3 (see right-view 
in Figure 4A). The size of the hollow region, as seen in top-view, also increases. However, in the cross-sectional 
view, the size of the hollow part decreases. In all these geometrical aspects, prototype 2 falls in between prototypes 
1 and 3. The voxel differences between prototypes are shown more clearly in Figure 4B/C. Comparing prototypes 
1 and 2 (Figure 4B) indicate that prototype 2 has more material in the center and less material at the edges than 
prototype 1. The same is true when prototype 2 is compared with prototype 3 (Figure 4C). 
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Figure 3: Objectives for the crash load (Ic1 IE) and the static load (Ic2 IE) vs. similarity measure. To aid visualization, data hue is based on “s”- 
similarity coordinate. 

 
  
Figure 4: Prototypes (marked red on Pareto front) based on the similarity coordinate. A: Geometrical features of prototype 2 fall in between prototypes 
1 and 3. Different views of the prototypes are shown with the density as hue: cross-section (CS), cut model-view (at mid-span) from top and right. The 
three design clusters are enclosed in dashed brackets. B: Difference between prototype 1 and 2. Blue voxels are present only in 1, not in 2; orange 
voxels are only in 2. C: Difference between prototype 2 and 3. Blue voxels are present only in 2; orange voxels are only in 3. 
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4.4 Interpretation of principal components 
Each principal component, being a basis vector, has a unit magnitude. Unlike the voxel representation whose 
elements are either 0 or 1, elements in a principal component can have negative or fractional values. A possible 
way to interpret principal components is to find elements with large absolute values. These elements indicate 
regions of high variation across the design set. Using this method, the first two principal components of the Pareto 
set of designs are shown in Figure 5. The first component explains a variance of 𝟓𝟓𝟓𝟓 % in the data; the second 
component explains 𝟓𝟓𝟏𝟏 % of the variance. The similarity coordinate of a design is the magnitude of projection 
onto the first principal component. An alternative method to PCA decomposition is non-negative matrix 
factorization [21] which ensures that the components have non-negative values using a constraint. This can lead 
to an easier and possibly more sensible interpretation of components. 
 

 
Figure 5: Voxel interpretation of principal components. Each element of the principal component is a voxel that is colored based on its magnitude. A: 
First principal component associated with the similarity coordinate (“s”). B: Second principal component. 

4.5 Robustness analysis 
Figure 6 shows the robustness of geometrical change with respect to the relative preference of load cases. The 
figure indicates that initially, “s” changes slowly with an increase in pref_1 (for values < 0.25); changes relatively 
quicker midway (when pref_1 is around 0.5); changes slowly again at the end (pref_1 > 0.75). This indicates that 
the geometry changes more prominently for changes in preferences, and hence for changes in objectives, at the 
central region of the Pareto front. 
 

 
Figure 6: Sensitivity of similarity coordinate "s" on “pref_1” (user-preference of the crash case over the static case) 

B  A 
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5 Conclusion and outlook 

We presented a novel approach to automatically process the large number of designs generated by topology 
optimization algorithms. The method identifies the most important geometric variations in the designs and finds 
prototypes in clusters of similar designs. This gives additional insight into the designs and allows geometrical 
features to be treated as any other performance-based feature in design exploration, simplifying considerably the 
design process. In this paper, we use a LS-OPT workflow to accomplish this task. Designs on a Pareto front are 
clustered based on geometrical similarity, with a prototype identified for each cluster. To encode geometrical 
similarity, we demonstrate the use of PCA on the voxel representation of finite element models. PCA can 
automatically identify important geometrical variances in a design data-set and encode it into a single similarity 
coordinate. In the future, it would be interesting to explore more complex design datasets, considering user 
preferences for geometrical features concurrently with other performance measures. 
 
The voxelization process and similarity coordinate calculation could be computationally expensive. For the latter, 
to calculate similarity coordinate for a single design, all the other designs need to be considered as well. 
Furthermore, one obtains similarity coordinates for the other designs as well. It is inefficient to run this method 
for other designs again, which is what a stage in LS-TaSC does by default. Therefore, we suggest LS-TaSC to 
provide a step that only runs once per stage, instead of for each test case. This could be relevant for other post-
processing tasks that only need to run once for a set of designs. 
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