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Abstract 

 
For multidisciplinary topology optimization it can be difficult to select the weights for each load case. This becomes even harder if there 
are multiple design considerations per case. But if constraint values can be defined, then the problem is solvable, because the problem 
is transformed into one of satisfying the constraints. The most difficult constraint to control is that of the crash pulse, because the 
existing linear methodologies cannot be used – solutions such as multipoint strategies and spatial kernels must be introduced instead. 
The NVH constraints are however linear and solving the NVH constraints in combination with the crash pulse becomes a two-level 
problem. In this paper we show multidisciplinary design optimization considering constraints from impact, linear statics, and frequency 
load cases. 

 
 

Introduction 
For vehicle design one has a multitude of design considerations, of which some are likely in conflict. For example, 
the standard topology objective of minimum compliance may increase the lethality of the impact forces. There is 
therefore a need for multidisciplinary topology optimization methodologies. 
 
Topology optimization [1,2,3] finds the layout of a structure supporting the required load by starting with a ground 
structure within which the required structural topology or load path must be found. Much of the current research 
in topology optimization is driven by additive manufacturing [2,3]. 
 
Multi-objective topology optimization is important in many cases, with modern direction of investigation varying 
from vehicle design as in this study to the design of pelvic prostheses [4]. A current approach of doing 
multidisciplinary topology optimization is by choosing weights for each load case and doing a trade-off study. 
This is workable if only there is only a single design consideration per load case. Specifically, it won’t work when 
designing for a NVH (Noise, Vibration and Harshness) load case considering both the fundamental frequency 
and the first bending/torsion mode frequency, together with an impact load case considering both an energy 
requirement and a limit on the peak acceleration, because two load case weights cannot be used to control four 
constraints. 
 
Designing for vehicle occupant protection typically consider a force-displacement curve in some form. For 
example, the energy E and the load resistance R of a part are related as  𝐸𝐸 =  ∫𝑅𝑅(𝑢𝑢)𝑑𝑑𝑑𝑑 with u the displacement. 
The main technological problem is that of design for the crash pulse and the energy absorbed as described for 
example in [5]. Design sensitivity information (the derivatives of the constraints and objective with respect to the 
design variables) is normally used to solve design optimization problems; for example Weider and Schumacher  
[6] computed topological derivatives considering both material and geometrical nonlinearities. A design 
sensitivity implementation is however not feasible for impact problems and an alternative method such as 
surrogate modeling which does not require analytical gradients is required. 
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Multipoint methods such as surrogate modeling or numerical derivatives can be used as substitutes for the design 
sensitivity information. This is solved by using a spatial kernel approach [7] allowing the use of a multipoint 
scheme.  The multipoint and the related metamodeling schemes were first developed by the Livermore Software 
Technology team in work that started before 2015  [8,9,10,11]. Through our clients such as Honda Research 
Institute it became known to others. The method has been shown to be able to control the crash pulse and 
maximize energy absorption [5]. 

 
Constrained multi-disciplinary topology optimization 

 
Solving general problems using a dual problem or a saddle point 
 
Considering the load resistance of a part -- the energy E is 𝐸𝐸 =  ∫𝑅𝑅(𝑢𝑢)𝑑𝑑𝑑𝑑 with R the resistance and u the 
displacement. Designing for maximum energy absorption in occupant protection is often stated as 𝑚𝑚𝑚𝑚𝑑𝑑𝒙𝒙𝐸𝐸(𝒙𝒙) 
with x the topology variables. This will however not yield the desired result, because a structure must be at its 
minimum energy state to be stable -- simply maximizing the energy can result in infinite displacements and other 
instabilities. To obtain a stable problem you must solve for 𝑚𝑚𝑚𝑚𝑚𝑚𝒙𝒙𝐸𝐸(𝒙𝒙), which is the exact opposite. 
 
The solution is to introduce some additional variables ξ (known as the spatial kernel), and to solve the max-min 
or saddle point optimization problem 

𝑚𝑚𝑚𝑚𝑑𝑑𝝃𝝃𝑚𝑚𝑚𝑚𝑚𝑚𝒙𝒙𝐸𝐸(𝝃𝝃,𝒙𝒙) 
One therefore has two saddle directions: a load-bearing structure is found by computing the minimum energy 
state using x, while energy absorption of the structure is maximized by solving for the spatial kernel variables ξ. 
 
In general, and specifically for Multidisciplinary Design Optimization (MDO) problems, one does not design 
merely for energy absorption.  A generalized problem can be solved considering the dual problem: 

𝑚𝑚𝑚𝑚𝑚𝑚𝝃𝝃𝐹𝐹(𝝃𝝃(𝒙𝒙)) 
 
where x is computed using 

𝑚𝑚𝑚𝑚𝑚𝑚𝒙𝒙𝑓𝑓(𝒙𝒙(𝝃𝝃)) 
with f usually taken as the compliance, or the negative value of fundamental frequency, which means the analyst 
only must specify F.  In such a case one can maximize energy absorption using F while maximize stiffness using 
f. Similarly, you can minimize mass using F while maximizing stiffness using f. 
 

 
Introducing constraints into the dual problem 
We have the standard objective is 

𝑓𝑓(𝒙𝒙) 
and the constraints as 

𝑔𝑔𝑖𝑖( 𝒙𝒙) ≤ 0 
 
The constraints can be split into two sets -- for the one set design sensitivity information can be analytically 
computed 

𝑔𝑔𝑖𝑖ana(𝒙𝒙) ≤ 0 with 𝑚𝑚 = 1, … ,𝑚𝑚 
while the other set requires the computation of numerical derivatives using the spatial kernel in the upper problem 

𝑔𝑔𝑗𝑗num(𝒙𝒙) ≤ 0 with 𝑗𝑗 = 1, … ,𝑚𝑚 
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Adding the Lagrange multipliers to the objective gives us the Lagrange function  
 

𝐿𝐿(𝒙𝒙,𝛌𝛌, 𝛏𝛏) =  𝑓𝑓(𝒙𝒙) +  �λ𝑖𝑖𝑔𝑔𝑖𝑖ana(𝒙𝒙)
𝑖𝑖

+  �ξ𝑗𝑗𝑔𝑔𝑗𝑗num(𝒙𝒙)
𝑗𝑗

 

The constraints needing numerical derivatives are given special treatment. A spatial kernel 
𝑠𝑠( 𝝃𝝃) = � ξ𝑗𝑗𝑆𝑆𝑗𝑗(𝜻𝜻)

𝑗𝑗
 

is introduced to satisfy these constraints. The kernel is composed of basis functions referring to 𝜻𝜻 the spatial 
coordinates associated with variable x and is applied to 𝑓𝑓(𝒙𝒙)which is the function that generates the load bearing 
structure, which yields 

𝐿𝐿(𝒙𝒙,𝛌𝛌, 𝛏𝛏) = [1 + 𝑠𝑠( 𝝃𝝃)]𝑓𝑓(𝒙𝒙) + �𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖ana(𝒙𝒙)
𝑖𝑖

 

 
The current implementation of the spatial kernel is slightly different, because we roll up all the spatial kernel 
functions into a surface written as a summation over both the basis functions and the elements as: 

ℎ(𝒙𝒙) =  
1
𝑚𝑚
�  
𝑁𝑁

𝑒𝑒=1

𝑑𝑑𝑒𝑒
ex p(𝜉𝜉0 + 𝜉𝜉1𝑆𝑆1(𝜁𝜁𝑒𝑒) + 𝜉𝜉2𝑆𝑆2(𝜁𝜁𝑒𝑒) + ⋯ )   = 1 

with 𝑑𝑑𝑒𝑒 a spatial value at element e (𝑒𝑒 = 1, … ,𝑁𝑁), and ξ solved to satisfy the constraints. See reference [7]  for 
the details of an implementation. 
 

 
Expansion to MDO 
For multidisciplinary optimization we have the objective as 

𝑓𝑓(𝒙𝒙) = �𝑤𝑤𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑙𝑙(𝒙𝒙)
𝑙𝑙𝑙𝑙

 

in which it should be noted that the load case weights can be used to solve for a subset of the constraints. The 
constraints are split into two sets as described before -- for the one set design sensitivity information can be 
computed, while the other set requires the computation of numerical derivatives using the spatial kernel in the 
upper problem. 
 
As before, we can add the Lagrange multipliers to the objective giving the Lagrange function  

𝐿𝐿(𝒙𝒙,𝛌𝛌, 𝛏𝛏) = �𝑤𝑤𝑙𝑙𝑙𝑙[1 + 𝑠𝑠( 𝝃𝝃)]𝑓𝑓𝑙𝑙𝑙𝑙(𝒙𝒙)
𝑙𝑙𝑙𝑙

+ �λ𝑖𝑖𝑔𝑔𝑖𝑖ana(𝒙𝒙)
𝑖𝑖

 

which contains the high-level variables [𝒘𝒘,𝝀𝝀, 𝝃𝝃] used to solve for the constraints. 
 

 
Solving the dual problem  
The dual problem is solved as an upper level problem in the Lagrange multipliers (including weight and spatial 
kernel variables) and a lower level problem in the topology variables. The lower level problem is solved using 
the projected subgradient method [12] considering the Lagrange multipliers, while the upper level problem can 
be solved using finite differences or surrogate models. 
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The important algorithm settings are the step size (desired mass flow) for the lower level problem and the trust 
region bounds (move limits) for the upper level problem. The two settings are linked. If the convergence is too 
noisy then they can both be reset to a smaller value such as “0.25*Default” – in which it must be noted that 
“Default” is an allowed and recommended part of the expression.  
 

Examples 
 
Benchmark example with a displacement and fundamental frequency constraint. 
This is an academic example chosen for benchmark and verification purposes. It can be found as part example 
problems of LS-TaSC™ version 4.2. The structure is designed for two load cases – supporting the load as shown, 
as well as for the fundamental frequency. Three constraints are placed on the design: the displacement must be 
less than 0.008, the 2nd harmonic of the structure must be larger than 80, and the 3rd harmonic of the structure 
must be larger than 120. Note that the frequency load case has two constraints, which means the problem cannot 
be solved using the load cases weights. The results are shown in Figure 1. 
 

 
Figure 1 Benchmark example. The ground structure is shown on top with the final design below. The histories of the displacement and frequency 
constraints show that design process satisfied the constraints. Note that the frequency load case has two constraints, which means the problem 
cannot be solved using the load cases weights. 

 
Nonlinear Beam Example 
For this problem we study the trade-off between the natural frequency and a nonlinear displacement. The 
multidisciplinary problem is stated as minimizing displacement while subject to a lower bound of 750 on the 
natural frequency. This problem required a reduction in the optimization step size. 
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Figure 2 Nonlinear beam example. Shown are the base structure and two designs. The one design used only a displacement constraint and the other 
both a displacement and natural frequency constraint. The constraint histories for the latter case is also shown.  

 
Crash Box Example 
This problem is to perform lightweight optimization of an automotive crash box by considering crashworthiness 
characteristics along with NVH characteristics. These two characteristics yield a competition between 
deformability necessary for improving energy absorption and rigidity for improving NVH characteristics of the 
crash box. A solid design part connected to simplified bumper parts is used as the baseline design of the crash 
box subject to high-speed collision. However, this FE model cannot be used directly for conducting modal 
frequency analysis due to the involvement of bumper parts in the model. Therefore, the solid design part of the 
crash box with rigid mass attached at its front end is used for modal frequency analysis. A multidisciplinary 
optimization is conducted to minimize mass of the crash box with a constraint on energy absorption ability and 
two constraints on the frequencies of the first two bending modes with mode tracking. The energy absorption 
ability of the crash box should meet at least same maximum energy absorption as a reference shell-structured 
crash box, which is E* = 52 KJ. The frequencies of the first two bending modes in y-direction and z-direction 
should be larger than 0.73 and 0.71 respectively. Results are shown in Figure 3, Figure 4, and Figure 5. 
 

  

FE model for collision analysis FE model for modal frequency analysis 

Crash box 

Bumper parts 
Crash box 

Rigid mass 
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Final design of crash box Front view of crash box View of crash box 
Figure 3 Crash box example. The FE models for two load cases are shown on top with the final design below displayed in different views. 

 

   

Internal energy history Frequency history of the 1st 
bending mode in y-direction 

Frequency history of the 1st 
bending mode in z-direction 

Figure 4 Histories of the internal energy and two frequency constraints.  

 

 
 

Deformation of crash box and bumper at t = 0 s (left) and t = 30 s (right) 
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First two bending modes in y-direction (left) and z-direction (right) 
Figure 5 The deformed structures for two load cases. 

 
Summary and Conclusions 

 
The paper showed how multidisciplinary topology optimization problems are formulated and solved by 
formulating a Lagrange function from the multitude of objectives and the constraints. This allows us to solve 
huge multidisciplinary topology optimization problems incorporating both occupant safety and NVH constraints.  
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