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Abstract 
  
Iterative solvers for sparse linear systems are used as the default option in a few places in LS-DYNA, e.g., thermal analysis and 
incompressible fluid flow. They are also available as a non-default option for implicit mechanics, electromagnetics, and acoustics. 
Until now, our suite of iterative solvers was limited to a few simple solvers (Conjugate Gradients and GMRES), and a few simple 
preconditioners. We recall that a preconditioner is an approximate inverse of the matrix (e.g., the stiffness matrix) that aims at 
improving convergence. Our preconditioners were limited to simple techniques like diagonal scaling and basic domain decomposition 
techniques that discard the coupling terms between processors, in MPP. Problems from customers are growing faster than memory 
size, making it difficult to use direct solvers. They are also often too numerically challenging to use simple iterative solvers, in 
particular in implicit mechanics. This has pushed us to revisit our suite of iterative solvers and preconditioners. In particular, we have 
been investigating the use of Block Low-Rank factorizations (BLR) and the use of Algebraic Multigrid (AMG). In the talk, we will 
compare these new options across all the different applications that make use of linear solvers. We will discuss convergence, memory 
usage, and scalability. For end users, the takeaway will be a better understanding of which solver options to use for different kinds of 
problems, and what to expect from them.  
 

Introduction 
 

Linear solvers are ubiquitous in LS-DYNA and simulation codes in general. They are broadly classified into 
two groups of algorithms. Direct solvers are essentially “exact” solvers, typically based on Gaussian 
Elimination; they factor the input matrix A into triangular factors (A = L U factorization in the non-symmetric 
case, A = L D LT factorization in the symmetric case) and compute the solution by triangular solves. They are 
robust and accurate but their cost (time and memory) can be a hurdle. On the other hand, iterative solvers try to 
converge to the solution of the problem by generating a sequence of approximate solutions. They are generally 
cost-effective, since the main computational kernel is a sparse matrix-vector product, but they are less robust 
than direct solvers and can fail to converge for difficult problems. The Conjugate Gradients algorithm of 
Hestenes and Stiefel [1] and the Generalized Minimal Residual (GMRES) method of Saad and Schultz [2] are 
the most well-known iterative methods. One way to make iterative solvers more robust is the use of 
preconditioners; a preconditioner P is a form of approximation of A such that P-1 A x = P-1 b is easier to solve 
than the original problem A x = b. The crux of the matter is to find a matrix P that helps the iterative solver to 
converge but such that solving with P (applying P-1) is fast. Finding good preconditioners is often very problem 
dependent and it is admittedly as much of an art as it is a science. 
 
In LS-DYNA, we have historically focused on direct solvers. This is because, for many years, the main driver 
was implicit mechanics, which is an area where iterative solvers tend to fail, especially for applications like 
metal forming and metal stamping. For a long time, only the thermal solver made use of iterative solvers as the 
default approach; this is because our thermal problems are numerically well-behaved most of the time, 
especially in transient analysis. However, new applications and areas of research have pushed us to revisit 
iterative solvers and preconditioners: 

• The incompressible fluid flow module of LS-DYNA solves the Incompressible Navier-Stokes equations 
using a predictor-corrector approach in which the momentum (or velocity) equations and the pressure 
equations are solved separately. The momentum equation is non-symmetric and is solved with GMRES. 
The pressure equation is symmetric and is solved with Conjugate Gradients. The latter equation is 
numerically difficult and has prompted us to explore many different preconditioners. 
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• The electromagnetism module of LS-DYNA solves the eddy current approximation of the Maxwell 

equations with finite elements. The resulting system is solved using a direct solver by default, but 
problems coming from customers have grown fast in recent years, for example simulations of car 
batteries and problems in electrophysiology like heart simulations. Having efficient iterative solvers for 
these problems is therefore more and more important. Note that the electromagnetism solver also use 
boundary elements to solve the surface of the conductors, instead of meshing the surrounding air. Finite 
element formulations lead to “sparse” linear systems, meaning that the corresponding matrix has few 
nonzero elements. This is due to the locality of interactions across the mesh; nodes only interact to their 
neighbors, not with every node in the physical domain. On the other hand, boundary element 
formulations lead to “dense” (or “fully populated”) systems where the matrix is not sparse. Here, we 
only focus on sparse problems from finite elements. Our dense linear solvers for boundary elements are 
described in detail in another publication [3]. 

• New applications from multi-scale mechanics, in particular problems involving Representative Volume 
Elements (RVEs) have been pushing direct solvers to their limit, in terms of cost. We describe such an 
application in detail in one of the following sections. 

• Isogeometric analysis (IGA) is another area where iterative solvers might play a role. Matrices arising 
from IGA tend to be less sparse than matrices coming from standard finite elements, which could make 
it harder to use direct solvers. 

 
In the next section, we remind the reader what iterative solver options are currently available in LS-DYNA. The 
following section presents recent developments. 
 

Current iterative solvers in LS-DYNA 
 

Iterative solvers 
 
Most of the matrices that we deal with are symmetric and indefinite; their null space (zero eigenmodes) 
correspond to rigid body modes in implicit mechanics, or the to fact that the electric potential field is defined up 
to constant in electromagnetism, etc. However, when appropriate boundary conditions (constraints) are imposed 
(e.g., prescribed motion or contacts in implicit mechanics), we use the Constraint Method [4] (also referred to as 
the null space method, or direct elimination of constraints) to form a reduced linear system corresponding to the 
independent degrees of freedom (dofs). This removes the null space of the matrix, and we obtain a positive 
definite system that can be solved with the Conjugate Gradients algorithm. This is the default solver for thermal 
simulations, and for the pressure solve of the incompressible fluids code. It can also be used for implicit 
mechanics and electromagnetics. 
 
A few applications generate nonsymmetric matrices: rotational dynamics with gyroscopic effects (ISTFNS=3 in 
*CONTROL_IMPLICIT_DYNAMICS), conjugate heat transfer problems with a monolithic coupling between 
the structure and the fluid (CTYPE=0 in *ICFD_CONTROL_CONJ), … For these applications, GMRES is our 
iterative solver of choice. 
 



16th International LS-DYNA® Users Conference Implicit 

June 10-11, 2020  3 

 
Preconditioners 

 
As mentioned in the first section, preconditioners are a critical ingredient of iterative solvers. Our original set of 
preconditioners includes: 

• Diagonal preconditioner (also known as Jacobi preconditioner, or diagonal scaling): this is simply the 
diagonal of A; P=diag(A). This is the simplest of preconditioners. It is inexpensive; computing P-1 x for 
a given x costs n floating-point operations (with n the size of the problem) and doesn’t require any 
inter-processor communications, since P is diagonal. Obviously, this is not a very powerful 
preconditioner, but it can be enough for simple problems. For example, this is the default option for 
thermal simulations (SOLVER=12 in *CONTROL_THERMAL_SOLVER). It is also available in 
implicit mechanics (LSOLVR=22 in *CONTROL_IMPLICIT_SOLVER). 

• A block diagonal preconditioner, where the blocks are defined by the MPP decomposition of the 
problem. In MPP, every processor owns a subset of columns of the matrix. Therefore, every processor 
owns a diagonal block (corresponding to a local problem on the subdomain owned by the processor), 
and off-diagonal terms that define the coupling between different subdomains. Our block diagonal 
preconditioner simply performs a local solve on each diagonal block (one per processor), ignoring the 
coupling terms. To mitigate cost, these local solves are themselves approximate solves (therefore there 
are two levels of approximation here), and we have four different flavors, inspired by traditional 
preconditioning techniques: 
◦ Symmetric Gauss-Seidel (SGS): SOLVER=13 for thermal, LSOLVR=23 for implicit. Denote B the 

diagonal block owned by a given processor, and consider the splitting B = L + D + U, where L is 
the lower triangular part of B (excluding the diagonal), D is the diagonal of B, and U is the upper 
triangular part of B (excluding the diagonal), equal to LT  in the symmetric case. The approximate 
local solve is defined by (D + U)-1 D (L + D)-1. 

◦ Symmetric Successive Over Relaxation (SSOR): SOLVER=14 for thermal, LSOLVR=24 for 
implicit. This is an extension of the Gauss-Seidel approach. For a given parameter w, the 
approximate local solve is defined by (2 w – 1) (w D + L)-1 D (L + w D)-1. For w = 1, SSOR and 
SGS are identical.  

◦ Zero-fill incomplete factorization: SOLVER=15 or 16 for thermal, LSOLVR=25 or 26 for implicit. 
The local diagonal block B is sparse; if we were to compute an exact factorization in order to 
perform an exact local solve, the number of nonzeros in the factors of B would in general be much 
larger than the number of nonzeros in B itself, a phenomenon known as fill-in. A zero-fill 
incomplete factorization is an approximate factorization where fill-in terms are discarded. The two 
options (15 and 16 for thermal, 25 and 26 for implicit) correspond to two different implementations; 
the second option uses more storage but applying the preconditioner is faster. 

◦ Threshold-based incomplete factorization: SOLVER=18 for thermal, LSOLVR=27 for implicit 
(from R12.0). This is similar to the previous option, but fill-in entries are discarded based on their 
magnitude (entries above a certain numerical threshold are kept while those below the threshold are 
discarded). 

The main interest of this block diagonal approach is that it does not involve inter-processor 
communication, since each processor (MPI rank) only performs a local solve, independently of the 
other processors. However, this means that coupling terms between subdomains are ignored. This also 
means that the preconditioner becomes weaker when the number of processors increases, since there are 
then more diagonal blocks (of smaller size), and more coupling terms are ignored. In the limit, when the 
number of processors is “infinite” (as large as the number of unknowns), this block diagonal 
preconditioner becomes a simple diagonal preconditioner. Of the four variants, the threshold-based 
incomplete factorization (SOLVER=18, LSOLVR=27) is usually the most robust. This is the option we 
use for pressure solves in the incompressible fluid solver, with the dropping tolerance set to 10-3. 
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Problems from customers have been growing faster than memory size, making it harder to use direct solvers, 
which are very memory consuming. We are now seeing problems with hundreds of millions of degrees of 
freedom in multiple areas of applications: automotive, gas turbines, and biomedical simulations. Furthermore, 
simple preconditioners like diagonal scaling or block diagonal preconditioners are often not powerful enough to 
handle complex physics, and block diagonal preconditioners quickly become ineffective when using hundreds 
or thousands of MPI ranks, which is more and more common. 

 
New generation of iterative solvers and preconditioners 

 
MINRES 

 
As mentioned above, the majority of our problems are symmetric positive definite (after eliminating the 
constraints), and the Conjugate Gradients algorithm can be used. We also have nonsymmetric problems which 
can be solved with GMRES. But we also have a few symmetric indefinite problems like inertia relief, which 
allows the analysis of models that have unconstrained rigid body modes. Such problems could be solved using 
GMRES, ignoring symmetry, but GMRES can be costly since it needs to maintain an orthogonal Krylov space. 
An alternative is to use the Minimal Residual (MINRES) method of Paige and Saunders [5], which targets 
symmetric indefinite systems, and of which GMRES is a generalization. Contrary to GMRES, MINRES does 
not need to maintain a Krylov space. However, even though MINRES can solve indefinite problems, it requires 
a positive definite preconditioner, which can be a major hurdle. If the input matrix A is indefinite, then a good 
preconditioner, which typically is a good approximation of A, will likely be indefinite too, and MINRES will 
break down. 
 
We implemented MINRES and tried several inertia relief problems from automotive applications. We found out 
that we could not achieve convergence when using weak preconditioners (such as some of the ones described 
above); on the other hand, strong preconditioners (such as the ones described in the next sections) caused 
MINRES to break down, because they were not positive definite. There are standard ways of modifying 
preconditioners to force positive definiteness, but we have not explored these in depth. For now, we choose not 
to add MINRES to the set of iterative solvers available to users. 
 

Block Low-Rank factorizations (BLR) 
 

In many applications, matrices have low-rank (singular) off-diagonal blocks. This is true for the dense matrices 
arising in boundary element methods, and this is also true in finite element methods; stiffness matrices are 
sparse, but factoring a sparse matrix can be cast a sequence of dense factorizations of smaller, intermediate 
matrices, and these matrices have low-rank blocks. Low-rank blocks are often referred to as data sparse, 
because they can be compressed using a singular value decomposition or a rank-revealing factorization. A low-
rank m x n matrix B can be compressed into B = X Y, where X is m x r (“tall and skinny”) and Y is r x n (“short 
and wide”), with r the rank of B. If r is small enough, then storing X and Y is cheaper than storing B, and 
operating on X and Y is cheaper than operating on B. The compression can be exact and used to accelerate 
exact solvers, or it can be approximate (guided by a given threshold) and used to design approximate 
representations and preconditioners. 
 
This observation gave rise to the field of Hierarchical Matrices [6]. We have been interested in a subclass of 
Hierarchical Matrices called Block Low-Rank matrices (BLR). This is a simple but effective representation 
where a matrix is partitioned following a regular partitioning of the rows and columns; off-diagonal blocks are 
compressed independently of each other. A BLR representation is illustrated below. 
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We have used BLR representations in our dense solvers for electromagnetics and acoustics since 2004. In 2010, 
we started collaborating with the MUMPS team. MUMPS [7, 8] is an open-source sparse direct solver that 
implements the multifrontal method of Duff and Reid [9]. MUMPS now has Block Low-Rank algorithms to 
speed-up the factorization and solution phase; by tuning the threshold used to compress blocks, it can be used a 
direct solver or a preconditioner. 
 
The figure below illustrates the performance of MUMPS for two very different models: a Representative 
Volume Element (RVE) problem described in the next section, and a 105M degrees of freedom whole jet 
engine model provided by Rolls-Royce [10]. In each figure, the leftmost bar (“FR”) is the performance of the 
standard solver, without BLR approximations (“full-rank” mode). Then, we switch to the BLR mode, which we 
use as a preconditioner for Conjugate Gradients. When the compression threshold is close to machine precision 
(left-hand side of each figure), we have an “almost direct” solver, which converges in a couple of iterations. As 
the threshold gets closer to 1 (right-hand side of each figure), we have a more and more aggressive 
preconditioner; performance improves, but sometimes convergence is lost. The value of the compression 
threshold which provides the best performance is problem dependent, but we found (across a large set of 
problems, not shown here) that 10-6 is often a good tradeoff. The figure also illustrates that for some problems 
we get significant gains from BLR (RVE case on the left-hand side), while sometimes we only get marginal 
gains (Jet Engine model on the right-hand side). 

Figure 1: Block Low-Rank representation of 
a dense matrix; off-diagonal blocks are low-
rank and represented as a product of two 
matrices to save storage and operation cost. 
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The next figure illustrates the scalability of the factorization and triangular solve when one increases the number 
of MPI ranks. For this problem (jet engine model), the BLR factorization and solve scale as well as the standard 
(“full-rank”) factorization and solve do. 
 

 
 
The last figure is a complexity experiment. There are theoretical results that describe the asymptotic complexity 
of sparse direct solvers and BLR solvers for regular 2D and 3D grids, but the vast majority of our problems are 
unstructured meshes. The figure uses three versions of the jet engine model prepared by Rolls-Royce: 11M 
nodes (33M degrees of freedom), 35M nodes (105M dofs), and 67M nodes (200M dofs). The figure shows that 
the number of floating-point operations for the full-rank factorization seems to increase slightly more than 
quadratically, while the increase is less than quadratic for the BLR factorization.  
 

Figure 2: Scalability of MUMPS-BLR for a 105M dof jet engine model. 

 Figure 2: Performance of MUMPS-BLR (used as a preconditioner for Conjugate Gradients), as a function of 
the compression threshold, for two problems: 3M dof hyperelastic rubber RVE (left-hand side) and 105M dof 
jet engine model (right-hand side). 
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As of R11.1, MUMPS and its Block Low-Rank feature can be used for implicit mechanics problems 
(LSOLVR=30 in *CONTROL_IMPLICIT_SOLVER; the BLR compression threshold is specified using the 
DROPTOL parameter of the same keyword). It will be available as a thermal solver in R12.0. We are also using 
the Block Low-Rank mode of MUMPS in our implementation of the Locally Optimal Block Preconditioned 
Conjugate Gradient (LOBPCG) eigensolver [11] (EIGMTH=102 in *CONTROL_IMPLICIT_EIGENVALUE).  
 
Block Low-Rank techniques are very promising. They are very robust (as long as the compression threshold is 
set to a reasonable value). Since they are accelerations of direct solvers, they sometimes suffer from similar 
problems (cost of the analysis phase, memory usage), but there has been tremendous progress in recent years. 
We are in the process of integrating low-rank techniques to our in-house multifrontal code MF2. We are also 
evaluating other classes of low-rank techniques and other low-rank solvers, such as the Hierarchically Semi-
Separable (HSS) techniques implemented in STRUMPACK [12, 13]. 
 

Algebraic Multigrid (AMG) 
 

Algebraic Multigrid (AMG) methods [14] construct a hierarchy of coarse problems to accelerate a standard 
iterative method, and they aim at obtaining linear complexity. They have been widely successful for many 
applications, in particular fluid dynamics, and they constitute a very large and active field of research. We 
provide a simplistic description here and refer the reader to the extensive literature about AMG. The main steps 
of an AMG method are: 

1. Smoothing (relaxation): apply a few iterations of a simple iterative method like Gauss-Seidel or SSOR 
to reduce high-frequency errors from an initial guess. 

2. Restriction (downsampling): build a coarse problem and transfer the residual error on that coarse 
problem. 

3. Solve the coarse problem. 
4. Prolongation (interpolation): transfer the coarse solution back to the fine problem. 

This sequence defines a simple 2-level method, but step 3 can be replaced by a recursive application of steps 1-
4, defining a multilevel hierarchy of coarse problems, until the coarse problem is small enough to be solved 
efficiently. 
 
 

Figure 3: Complexity experiments for three 
versions of the same model, with MUMPS-BLR. 
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Our motivation for using AMG came from an application in material design, in collaboration with the 
Yokohama Rubber Company. The model is a Representative Volume Element (RVE) (sometimes also referred 
to as a unit cell) that consists of a cube of hyperelastic rubber with very stiff inclusions; periodic boundary 
conditions are used to simulate a larger macrostructure [15]. The discretization is a cubic grid of solid hexes. 
This kind of configuration is a worst-case scenario for direct solvers, because their memory usage grows as 
O(n4/3) and their floating-point operation count grows as O(n2) for regular 3D grids, with n the number of 
degrees of freedom. The increase is usually less dramatic for 2D models or “2.5D” models that are relatively 
hollow, like car bodies and jet engines. With our in-house direct solver, and well as with the external direct 
solver MUMPS, we were not able to solve further than a 150x150x150 grid (3.4M nodes, 10.1M degrees of 
freedom), but the goal for this application is to be able to solve at least 300x300x300 (81M degrees of freedom). 
 
We experimented with the public library Hypre [16]. Hypre is a library of iterative solvers and preconditioners, 
and it contains an implementation of Algebraic Multigrid, BoomerAMG [17]. We used BoomerAMG as a 
preconditioner for Conjugate Gradients. The table compares performance of our in-house direct solver (“MF2”) 
against MUMPS (in Block Low-Rank mode, as described in the previous section), and BoomerAMG, for a 
150x150x150 problem. For this model, AMG outperforms the direct solver and the BLR approach. All the 
simple preconditioners mentioned in the previous section failed for this problem. 
 

 
The next figure illustrates the linear complexity of the AMG approach. Here the grid size ranges from 50x50x50 
to 250x250x250, and run time grows linearly with problem size. 
 

 
 

Figure 4: Performance of different solvers for a 
150x150x150 RVE. 

 Figure 6: Performance of BoomerAMG for different RVE grids. 
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It is important to note that it took a long time to get these results. AMG codes have many options and finding 
the best set of parameters for a given problem can take a lot of trial and error. Furthermore, even though AMG 
methods can be used in a purely algebraic setting (i.e., the only input are a matrix and a right-hand side vector), 
they can greatly benefit from additional information, such as the mapping from equations to dof type, which 
requires an additional integration effort. 
 
We plan on experimenting with BoomerAMG (and AMG methods in general) further, with different classes of 
problems, in particular the pressure equation of the incompressible fluid solver. 
 

Conclusion and future work 
 
Even though iterative solvers have robustness issues, they are an important tool of our suite of solvers, both for 
problems that are known to converge easily (e.g., transient thermal transfer), and for very large scale problems 
that are intractable to direct solvers (e.g., very large Representative Volume Element problems). We have 
explored the use of the well-known Algebraic Multigrid algorithm (through the open source package 
BoomerAMG which is part of the Hypre library), and we are actively exploring the area of low-rank 
factorizations, in particular Block Low-Rank techniques. AMG turns out to be useful for very specific 
applications and we are continuing to evaluate its applicability to a wider range of problems. Low-rank methods 
have already demonstrated their usefulness and their robustness, and work is in progress to reduce their 
computational requirements further. As of LS-DYNA R11.1, BLR techniques are available (through the 
MUMPS package) for implicit mechanics (LSOLVR=30 in *CONTROL_IMPLICIT_SOLVER). As of 
LS-DYNA R12.0, they will be available for challenging thermal problems (SOLVER=19 in 
*CONTROL_THERMAL_SOLVER). In a future version of LS-DYNA, they will be made available to users as 
documented solver options for Incompressible CFD and Electromagnetism. 
 
We continue to explore different ideas for iterative solvers and preconditioners, and we are also exchanging 
ideas and software packages with the different Ansys groups. 
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