x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Drag Coefficient Optimization for a Sports Car Using the Coupling Between LS-DYNA® ICFD Solver, LS-OPT® and DEP MeshWorks Software

Vehicle aerodynamics are one of the key points allowing to improve the vehicle dynamic behavior, to improve performance and to reduce fuel consumption. The vehicle aerodynamics have been studied in wind tunnels for several decades. Numerical simulations are increasingly used in addition of physical testing and permit to increase the number of design experimentations with cost and time savings. When CFD engineers are looking into optimizing the global aerodynamics of a car, numerous factors are taking into considerations. A car is a very complex assembly that must fit with multi-physical requirements updated along the vehicle project (design aesthetic, crash safety, weight, vibrations, noise, performances, design manufacturing, etc.) to find the best compromise according to initial specifications. DynaS+, ANSYS-LST and DEP are working closely with automakers across the world on various applications. Often, the automakers are sharing their work in conferences only several years after for obvious innovative competitive reasons. The aim of this work is to demonstrate what the current innovative technologies are, and methodologies used on aerodynamic applications using open source sports car data. Like in the majority of aerodynamic studies, in the present work, the objective was to reduce the aerodynamic drag coefficient of our model. A design optimization was performed on the initial design with the help of the advanced morphing capabilities of the DEP MeshWorks© solution coupled with the optimization software LS-OPT and the Incompressible Computational Fluid Dynamics (ICFD) solver LS-DYNA.