
16th International LS-DYNA® Users Conference Constitutive Modeling 

June 10-11, 2020  1 

 
Calibration and Application of GISSMO and *MAT_258 

for Simulations Using Large Shell Elements 
 

Joakim Johnsen1, Jens Kristian Holmen1, Gaute Gruben4, David Morin2,3, Magnus Langseth2,3 
1Enodo AS, Trondheim, Norway 

2Structural Impact Laboratory (SIMLab), Department of Structural Engineering, Norwegian University of 
Science and Technology (NTNU), Trondheim, Norway 

3Centre for Advanced Structural Analysis (SFI CASA), NTNU, Trondheim, Norway 
4SINTEF Industry, Materials and Nanotechnology, Trondheim, Norway 

 
Abstract 

 
For many industrial applications finite element (FE) models are becoming increasingly large, making shell elements a necessary tool 
to maintain a reasonable computational time. Shell elements describe a plane stress state and phenomena like local necking and failure 
under bending must be appropriately dealt with. Thickness-to-length ratios larger than two are not uncommon for shell elements. This 
is often larger than the elements used for material model calibration and can sometimes lead to challenges in describing the geometry 
and the stress state. In this study, we evaluate the accuracy of *MAT_258 and a standard GISSMO calibration. The material and 
component tests are made of Docol 1400M. Results from *MAT_258 and GISSMO are compared to several component tests spanning 
a wide range of stress states. 
 
 

1 Introduction 
 
Shell elements are the typical choice when modelling mid- to large-scale structural problems in the industry. 
These elements work well when dealing with elastic-plastic material behavior and can usually be applied with 
confidence. On the other hand, when damage and failure occur, predicting accurate behavior becomes more 
challenging due to strain localization or local necking. Necking is challenging to describe with shell elements 
because (1) the elements are typically larger than the localization zone and (2) because shell elements are limited 
to plane stress conditions. When a neck forms, strain localization turns into a triaxiality-driven problem, meaning 
that all six stress and strain components are essential to describe the material behavior correctly. 
 
In this study we compare the well-known GISSMO failure model [1] with the newly proposed through-thickness 
damage regularization model (TTR) [2,6] available as *MAT_258 (*MAT_NON_QUADRATIC_FAILURE) in 
LS-DYNA® applied to Docol 1400M high-strength steel. After calibration, both failure models are validated by 
three-point bending experiments on purpose-made hat profiles. 
 

2 Experiments 
 
The Docol 1400M steel material was delivered in 1.0 mm thick sheets. Uniaxial tension (UT), plane strain tension 
(PST), in-plane simple shear (ISS) and equi-biaxial tension Nakajima tests (NK) were performed to cover a wide 
range of stress states before fracture [4]. All experiments were conducted at room temperature under quasi-static 
loading rates. To facilitate digital image correlation (DIC), all experiments were monitored by digital cameras. 
Two-dimensional (2D) DIC was used in all experiments except the Nakajima tests, where two cameras were used 
to enable three-dimensional (3D) DIC. For a detailed description of the experimental program, the interested 
reader is referred to Gaute et al. [4]. 
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2.1 Uniaxial tension 

 
The specimen geometry used in the UT tests is shown in Figure 1.  
 

 
Figure 1: Geometry of the UT specimens. 

Three repetitions were conducted in a hydraulic testing machine (Zwick/Roell) at a constant crosshead velocity 
of 4 mm/min, equating to a nominal strain rate of 1 ⋅ 10−3 s−1. A virtual extensometer with a length of 60 mm 
was used to calculate the engineering strain 𝑒𝑒 = (𝐿𝐿 − 𝐿𝐿0)/𝐿𝐿0, where 𝐿𝐿 and 𝐿𝐿0 are the current and initial 
extensometer length, respectively. The engineering stress was found as 𝜎𝜎 = 𝐹𝐹/𝐴𝐴0, where 𝐹𝐹 is the force measured 
by the testing machine and 𝐴𝐴0 is the initial cross-section area. The engineering stress-strain curves for the UT 
tests are given in Figure 2. 

 
Figure 2: Engineering stress-strain curve from UT tests. 

 
2.2 Plane strain tension 

 
Figure 3 shows the specimen geometry used in the PST experiments Three PST experiments were conducted in 
an Instron 5900 hydraulic testing machine at a constant crosshead velocity of 0.9 mm/min, yielding an initial 
nominal strain rate of 1.0 ⋅ 10−3 s−1 [4]. A virtual extensometer with an initial length of 18.5 mm was used to 
calculate the engineering strain, while the normalized force was found from the load cell and the cross-section 
area at the center of the gauge. The engineering stress-strain curves obtained from experiments are given in Figure 
4. 
 

 
Figure 3: Specimen geometry for plane strain tests. 
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Figure 4: Normalized force-strain curves from PST experiments. 

 
2.3 In-plane simple shear 

 
The same Zwick/Roell hydraulic machine as in the UT experiments were used for the in-plane simple shear tests. 
A constant cross-head velocity of 0.3 mm/min was used, translating to an initial nominal shear strain rate of 1.0 ⋅
10−3 s−1 based on the nominal width of the gauge section of the specimen shown in Figure 5a. 

  
(a) (b) 

Figure 5: (a) Geometry of the specimens used in the ISS tests and (b) the points used for the virtual extensometer. 

A virtual extensometer was applied to the diagonal of the gauge section as illustrated in Figure 5b and was used 
to calculate the displacement, the normalized force was calculated as 𝐹𝐹/𝐴𝐴0, where 𝐹𝐹 is the force found from the 
load cell and 𝐴𝐴0 is the minimum initial cross-section in the gauge. Figure 6 shows the resulting normalized force 
vs. displacement curves for the three repetitions. 

 
Figure 6: Normalized force vs. displacement from the ISS experiments. 
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2.4 Nakajima tests 

 
The Nakajima (NK) test-setup [7] is shown in Figure 7. Four repetitions were performed in a Zwick/Roell BUP 
600 test machine, where a punch with a constant velocity of 0.3 mm/s was used to load the specimens [4].  
 
 

 
Figure 7: Dimensions of the equi-biaxial Nakajima specimen and details showing the experimental set-up. 

A total clamping force of 200 kN was applied to hold the specimen in place during the test. To reduce friction, 
grease was applied to the punch in addition placing a 0.1 mm thick teflon sheet between the punch and the 
specimen [4]. To capture the out-of-plane deformation 3D DIC was used. Figure 8 shows the force vs. 
displacement curves obtained from the experiments. 
 

 
Figure 8: Force vs. displacement curves from the NK tests. 

 
 

3 Material modelling 
 

3.1 *MAT_NON_QUADRATIC_FAILURE/*MAT_258 
 
The *MAT_NON_QUADRATIC_FAILURE/*MAT_258 material model was developed by Costas et al. [2], 
who proposed and validated a damage regularization model for shell elements used in large-scale simulations.  
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The yield function is given as 

𝑓𝑓 =  𝜎𝜎eq − �𝜎𝜎0 + 𝑅𝑅(𝑝𝑝)� (1) 
 
 
where 𝜎𝜎eq is the Hershey-Hosford equivalent stress defined as 

𝜎𝜎eq = �
1
2

(|𝜎𝜎1 − 𝜎𝜎2|𝑎𝑎 + |𝜎𝜎2 − 𝜎𝜎3|𝑎𝑎 + |𝜎𝜎1 − 𝜎𝜎3|𝑎𝑎)�
1
𝑎𝑎

(2) 

 
 
where 𝜎𝜎1,𝜎𝜎2,𝜎𝜎3 are the major, intermediate and minor principal stresses and 𝑎𝑎 is the exponent controlling the 
curvature of the yield surface. If 𝑎𝑎 = 2 or 𝑎𝑎 = 4 the Hershey-Hosford equivalent stress is equal to the von Mises 
equivalent stress, and if 𝑎𝑎 = 1 or 𝑎𝑎 → ∞ it is equal to the Tresca equivalent stress. As is customary for steel, the 
exponent 𝑎𝑎 = 6, see Figure 9.  

 
Figure 9: Hershey-Hosford yield locus with an exponent of 𝑎𝑎 = 6  vs. the von Mises yield locus. 

 
Furthermore, 𝜎𝜎0 is the initial yield stress and 𝑅𝑅(𝑝𝑝) is the work hardening defined by a three-term Voce expression 
 

𝑅𝑅(𝑝𝑝) = �𝑄𝑄𝑖𝑖 �1 − exp �−
𝜃𝜃𝑖𝑖
𝑄𝑄𝑖𝑖
𝑝𝑝��

3

𝑖𝑖=1

 (3) 

 
 
where 𝑄𝑄𝑖𝑖 determines the saturation levels, 𝜃𝜃𝑖𝑖 controls the hardening rate and 𝑝𝑝 is the equivalent plastic strain 
found by associated flow. Strain rate sensitivity is not included in this study, but is available in *MAT_258 
through the constitutive relation  

�̇�𝑝 = �

0, if 𝑓𝑓 ≤ 0

�̇�𝑝0 �1 − �
𝜎𝜎eq

𝜎𝜎0 + 𝑅𝑅(𝑝𝑝)�
1
𝐶𝐶𝜎𝜎� , if 𝑓𝑓 > 0

(4) 

 
 
 
where �̇�𝑝0 is a reference equivalent plastic strain rate and 𝐶𝐶𝜎𝜎 is a strain rate sensitivity parameter. The viscoplastic 
equivalent stress then reads 
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𝜎𝜎eq = �σ0 + 𝑅𝑅(𝑝𝑝)� �1 +
�̇�𝑝
�̇�𝑝0
�
𝐶𝐶𝜎𝜎

(5) 

 
 
Note that strain rate sensitivity is not included in our simulations, i.e. 𝐶𝐶𝜎𝜎 = 0. The extended Cockcroft-Latham 
(ECL) failure criterion [5] is available, viz. 
 

�̇�𝐷 =
𝜎𝜎eq
𝑊𝑊c

�𝜙𝜙
𝜎𝜎1
𝜎𝜎eq

+ (1 − 𝜙𝜙)�
𝜎𝜎1 − 𝜎𝜎3
𝜎𝜎eq

��
𝛾𝛾

 �̇�𝑝   ∧   𝐷𝐷 ≤ 1 (6) 

 
where ⟨𝑥𝑥⟩ = 0.5(|𝑥𝑥| + 𝑥𝑥), 𝑊𝑊𝑐𝑐 is the Cockcroft-Latham failure parameter, 𝜙𝜙 and 𝛾𝛾 are parameters controlling the 
shape of the failure surface. Failure, in the form of element erosion, occurs when the damage parameter 𝐷𝐷 ≥ 1. 
Setting 𝜙𝜙 = 𝛾𝛾 = 1 reduces the failure criterion to the original Cockcroft-Latham failure criterion. 
 
To regularize the failure criterion, Costas et al. [2,6] proposed to distinguish between bending and membrane 
loading. First, a bending parameter was introduced as 
 

Ω =
1
2

|𝜀𝜀p,33
T − 𝜀𝜀p,33

B |
max��𝜀𝜀p,33

T �, �𝜀𝜀p,33
B ��

  where   Ω ∈ [0,1] (7) 

 
where 𝜀𝜀p,33

T  and 𝜀𝜀p,33
B  are the through-thickness plastic strain at the top and bottom integration points of the shell 

element, respectively. The Cockcroft-Latham failure parameter 𝑊𝑊c is then found by linear interpolation between 
the failure parameter in pure membrane (Ω = 0, 𝑊𝑊c = 𝑊𝑊c

m) and pure bending (Ω = 1, 𝑊𝑊c = 𝑊𝑊c
b), viz. 

 
𝑊𝑊c = Ω𝑊𝑊c

b + (1 − Ω)𝑊𝑊c
m (8) 

 
 
The effect of the bending parameter on the failure locus in plane stress is given in Figure 10 below. 

 
Figure 10: Effect of bending parameter 𝛺𝛺 on the failure locus. 

 
As there is no localization in pure bending, only the Cockcroft-Latham failure parameter in membrane is 
regularized, i.e. 
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𝑊𝑊c
m = 𝑊𝑊c

l + �𝑊𝑊c
s −𝑊𝑊c

l� exp �−𝑐𝑐 �
𝑙𝑙e
𝑡𝑡e
− 1��  (9) 

 
 
where 𝑊𝑊c

l is the horizontal asymptote as the length-to-thickness ratio 𝑙𝑙e/𝑡𝑡e → ∞, 𝑊𝑊c
s is the value for 𝑙𝑙e/𝑡𝑡e = 1, 

and 𝑐𝑐 is a parameter controlling the slope. 
 

3.1 GISSMO 
 
To obtain the Hershey-Hosford equivalent stress (Equation (2)) as in the simulation with *MAT_258 (see Section 
3.1) *MAT_ADD_EROSION is combined with *MAT_036/*MAT_3-PARAMETER_BARLAT. Isotropic 
material behavior is achieved by setting 𝑅𝑅00 = 𝑅𝑅45 = 𝑅𝑅90 = 1.0. The work hardening is prescribed through a 
load curve, where a discretized Voce work hardening is tabulated based on Equation (3). 
 
Damage coupling is used, viz. 
 

𝝈𝝈 = �1 − 𝐷𝐷��𝝈𝝈� (10) 
 
 
where 𝝈𝝈 is the effective Cauchy stress tensor, 𝝈𝝈� is the Cauchy stress tensor, and  𝐷𝐷� is the damage variable defined 
as 
 

𝐷𝐷� = �
0                                          if 𝐹𝐹 < 1

�
𝐷𝐷 − 𝐷𝐷crit
1 − 𝐷𝐷crit

�
FADEXP

         if 𝐹𝐹 = 1
(11) 

 
Here FADEXP is a parameter controlling how fast the damage grows. The damage evolution is defined as 
 

 �̇�𝐷 =
DMGEXP ⋅ 𝐷𝐷�1− 1

DMGEXP�

LCREGD ⋅ εf(η) 
(12) 

 
Where DMGEXP is a damage growth parameter, LCREGD is the tabulated regularization curve and 𝜀𝜀f(𝜂𝜂) is the 
fracture locus tabulated as a function of the stress triaxiality 𝜂𝜂, and 𝐷𝐷crit is the value of 𝐷𝐷 when a localized neck 
develops (𝐹𝐹 = 1). The instability parameter, 𝐹𝐹, evolves according to 
 

�̇�𝐹 =
DMGEXP ⋅ 𝐹𝐹�1−

1
DMGEXP�

𝜀𝜀crit(𝜂𝜂) �̇�𝑝 (13) 

 
where 𝜀𝜀crit(𝜂𝜂) is the tabulated instability locus defining the point of localized necking. 
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4 Calibration 

 
Both failure models were run with identical work hardening parameters. LS-OPT® was used in an inverse 
modelling approach to obtain the work hardening parameters from a UT200 uniaxial tension test (see Section 2.1) 
simulated in LS-DYNA R9.3 using solid elements. The solid element model used had three symmetry planes, 
with 4 elements (ELFORM=1) over the thickness, see Figure 11. 
 

 
Figure 11: Finite element model used in the inverse modelling approach. 

 
To obtain the Hershey-Hosford equivalent stress with 𝑎𝑎 = 6 (see Figure 9), *MAT_033 was used. Anisotropy 
was turned off by setting 𝐴𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐷𝐷 = 𝐹𝐹 = 𝐺𝐺 = 𝐻𝐻 = 1. The material constants and the hardening 
parameters are given in Table 1. 
 

Table 1: Material constants and work hardening parameters for Docol 1400M 

Material constants  Work hardening parameters 
𝜌𝜌 𝐸𝐸 𝜈𝜈 𝑎𝑎  𝜎𝜎0 𝑄𝑄1 𝜃𝜃1 𝑄𝑄2 𝜃𝜃2 𝑄𝑄3 𝜃𝜃3 

(kg/m3) (GPa) (−) (−)  (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 
7850 210.0 0.33 6.0  1.2 0.25 196.6 0.097 13.01 0.2 1.2 

 
A comparison between simulation and experiment is given in Figure 12. 

 
Figure 12: Solid element simulation vs. experiment for uniaxial tension. 
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4.1 *MAT_258 

Calibration of the failure model in *MAT_258 is straightforward. Since we are only using the standard Cockcroft-
Latham criterion (𝛾𝛾 = 𝜙𝜙 = 1 in Equation (6)) we only need one uniaxial tension test to fully calibrate the failure 
locus together with the regularization expression. 
 
First, we do a simulation of the uniaxial tension test using solid elements. The major principal stress, 𝜎𝜎1, and the 
equivalent plastic strain, 𝑝𝑝, is then extracted from the centermost element inside the neck. These two quantities 
are then used to calculate the critical Cockcroft-Latham parameter in bending, viz. 
 

𝑊𝑊c
b = � 𝜎𝜎1d𝑝𝑝

𝑝𝑝f

0
(14) 

 
where 𝑝𝑝f is the equivalent plastic strain at failure. Now the Cockcroft-Latham failure parameters associated with 
membrane loading needs to be determined, this is accomplished by running several single shell elements in 
uniaxial tension, where the applied displacement history is taken from virtual extensometers extracted from the 
solid element simulation, see Figure 13. 
 

 

 

(a) (b) 
 

Figure 13: (a) virtual extensometers from solid element simulation, and (b) single shell element in uniaxial tension. 

From the 5 single shell element simulations, we obtain 5 critical Cockcroft-Latham parameters for membrane 
deformation, viz. 
 

𝑊𝑊c,𝑖𝑖
m = 𝑊𝑊c

m(𝑙𝑙e 𝑡𝑡e⁄ = 𝑖𝑖)  = � 𝜎𝜎1d𝑝𝑝
𝑝𝑝f

0
   for  𝑖𝑖 = {1,2,3,4,5} (15) 

 
These five parameters are then used to find the three parameters associated with the regularization curve (Equation 
(9)) as shown in Figure 14. 
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Figure 14: Regularization curve. 

The parameters obtained for the failure model in *MAT_258 are given in Table 2. 
 

Table 2: Failure parameters for *MAT_258. 

𝑊𝑊c
b (MPa) 𝑊𝑊c

l (MPa) 𝑊𝑊c
s (MPa) 𝑐𝑐  𝜙𝜙  𝛾𝛾  

1276.60 196.05 615.06 0.703 1.0 1.0 
 

4.2 GISSMO / *MAT_ADD_EROSION 
 
To calibrate failure with GISSMO, all the experimental tests given in Section 2 was used, i.e. UT, PST, ISS and 
NK. A tabulated failure locus (𝜀𝜀f(𝜂𝜂)) together with a tabulated instability locus (𝜀𝜀crit(𝜂𝜂)) was used. The stress 
triaxiality for each point was kept constant, while the magnitude of the equivalent plastic failure strain and the 
necking strain, together with DMGEXP and FADEXP were optimized using LS-OPT, see Figure 15. 

 
Figure 15: Optimized failure and instability loci using GISSMO. 

 
 

The regularization curve LCREGD was found by running UT simulations with different element sizes, see Figure 
16. 
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Element size (mm) Failure strain scaling factor 
0.000 1.500 
1.042 1.000 
2.083 0.575 
3.125 0.430 
6.250 0.280 
∞ 0.280 

 

Figure 16: Regularization curve (LCREGD) for the GISSMO failure model. 

 
All parameters obtained from the optimization procedure in LS-OPT are given in Table 3. 
 

Table 3: Tabulated failure and fracture loci and parameters for GISSMO failure model 

𝜂𝜂  𝜀𝜀f  𝜀𝜀crit   DMGEXP  FADEXP  
-0.66 5.000 5.000  4.76672  1.31546  
-0.33 2.000 -    
 0.00 0.724 0.492    
 0.33 0.512 0.025    
 0.58 0.202 -    
 0.67 0.569 0.704    

 
 
 

5 Benchmark tests 
 
Three benchmark tests were performed in the Zwick/Roell BUP 600 testing machine: S20, S100 and S150, where 
the number denotes the width of the bridge, see Figure 17. The geometries were chosen to obtain three different 
stress states, i.e. S20 is close to uniaxial tension, S100 is biaxial tension, and S150 (full circle) is equibiaxial 
tension. The same experimental set-up as described in Section 2.4 was used for all tests, and two repetitions were 
performed per geometry.  
 
Each test was simulated in LS-DYNA using both *MAT_258 and GISSMO. Additionally, three different element 
sizes were used: 𝑙𝑙e/𝑡𝑡𝑒𝑒  ≈ {1,2,3}. 
 

 
Figure 17 Finite element models used in the benchmark simulations. 
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As seen from Figures 18(a) and 18(b) there is good agreement between simulation and experiment using both 
failure models. It is also evident that the effect of element size is small, meaning that the regularization procedure 
in both models works well. In terms of the point of fracture GISSMO performs slightly better than *MAT_258. 
 

  
(a) (b) 

Figure 18: Simulation vs. experiment for the S20 specimens using (a) *MAT_258 and (b) GISSMO. 

 
For the S100 experiments, *MAT_258 and GISSMO yields close to identical results as shown in Figures 19(a) 
and 19(b). Failure prediction in both simulation models is within the scatter from experiments, and the 
regularization procedure behaves as it should. 

  
(a) (b) 

Figure 19: Simulation vs. experiment for the S100 specimens using (a) *MAT_258 and (b) GISSMO. 

For the equibiaxial S150 experiments, there is a quite large difference between *MAT_258 and GISSMO, see 
Figure 20. GISSMO predicts that failure occurs too late, while *MAT_258 predicts that failure occurs to early. 
The regularization in *MAT_258 is not effective enough, since a clear effect of the element size can be seen on 
failure prediction in Figure 20(a).  
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(a) (b) 

Figure 20 Simulation vs. experiment for the S150 specimens using (a) *MAT_258 and (b) GISSMO. 

 
This is due to a combination of membrane loading and improper discretization of the geometry with the largest 
elements, further increasing the contribution of membrane loading in the failure assesment, which in turns reduces 
the failure strain21, meaning that the reason for too early failure prediction is mainly due to the mesh and the type 
of test, rather than the regularization procedure not working as it should. Not also that 
 

  
(a) (b) 

Figure 21: Comparison of the bending parameter for the S150 simulations with (a) le/te=1 and (b) le/te=3. 

 

6 Validation 
 
Validation experiments were performed on cold-formed hat profiles (Figure 22), the support plate was made of 
Docol 600DL and was fastened with pop-rivets. The profiles were subjected to three-point bending, where the 
punch had a constant crosshead velocity of 10 mm/min. A trigger was added directly beneath the punch to ensure 
that the profiles failed at the same position in each of the four repetitions. To reduce friction, grease was added 
between the punch and the hat profile, as well as between the supports and the hat profile.  
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(a) (b) 

Figure 22: The experimental set-up (a) and the specimen geometry (b). 

Three different mesh sizes were used for the simulation models, 𝑙𝑙𝑒𝑒/𝑡𝑡𝑒𝑒 = {1,2,3}. ELFORM = 2 was used, with 
5 integration points over the thickness of the shell element. The automatic single surface contact algorithm was 
used with SOFT=1 and FS=FD=0.1, i.e. a constant friction coefficient. The FE model is shown in Figure 23. 
To simplify the modelling approach the pop-rivets were not included, meaning that the support plate and the 
hat profile was assumed to be fully bonded together. 

 
Figure 23: Finite element model of the validation test. 

A comparison between simulations with *MAT_258 and experiments is shown in Figure 24(a), while the 
simulations with GISSMO are shown in Figure 24(b). In both cases the agreement with experiments are excellent. 
It is also evident that the regularization procedure handles the different mesh sizes well. Furthermore, considering 
the simplicity of the *MAT_258 model, the model predictions are excellent. 
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(a) (b) 

Figure 24 Simulation vs. experiments for the validation experiments using (a) *MAT_258 and (b) GISSMO. 

Figure 25 shows a comparison between the component after failure from experiment and simulation. 
 

  
(a) (b) 

Figure 25 Comparison of components after failure in (a) simulations and (b) experiments with the bending parameter indicated. 

 
 

7 Concluding remarks 
 
In this study we calibrate and compare two failure models for shells in LS-DYNA: the relatively new *MAT_258 
and GISSMO. *MAT_258 requires only one uniaxial tension test to calibrate if choosing the simplest failure 
criterion, i.e. the Cockcroft-Latham [8] failure criterion. On the other hand, there is no limitation in the number 
of tests that can be used to calibrate GISSMO given its tabulated nature, meaning that GISSMO is an extremely 
flexible failure criterion that in most cases will yield very good results, but at the cost of requiring many calibration 
experiments. 
 
Both failure models have been applied to 3 benchmark tests in a Zwick/Roell BUP 600 testing machine, and one 
three-point bending test of a purpose-made hat profile. All in all, both failure models give excellent results. In 
terms of computational time *MAT_258 slightly outperforms GISSMO, but it should be noted that this is not 
caused by GISSMO, but rather by the material model that was chosen to obtain the Hershey-Hosford yield surface 
(*MAT_036). 
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