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Abstract 
 
This study presents basic strategies for transfer of LS-DYNA® material card parameters from 2D- to 3D-discretizaion without extensive 
recalibration. The responses of a material card, calibrated on two-dimensional shell elements, are shown on single-element tests with 
different element formulations, on multi-element patches and on coupons. From this, magnitudes of error are ascertained and quick 
recalibration measures on material model parameters are derived.  
 
An evaluation of the stress-state of typical GISSMO-type specimen in different thicknesses and discretization-lengths is given and typical 
stress-states within the Lode-triaxiality stress-space of these specimens are highlighted. Therefrom, a measure of deviation from the 
calibrated state can be derived and used as a measure for allowable deviation from the 2D stress-state. Furthermore, the information 
on the three-dimensional stress-states, even in thin specimen, can be used for quick recalibration of parameters on the failure surface. 

 
 

Introduction 
 

Many publications on the calibration of material models, especially those focused on *MAT_024 with the 
GISSMO damage and failure model, employ a two-dimensional discretization of the test specimens, e.g. for steel 
in [1–3]. Within the industry, this discretization with shells is widely state-of-the art. Thus, the resulting material 
cards (i.e. the set of parameters for a material model which best represents test data) is calibrated, valid and 
predictive for a specific shell element formulation [4]. Full 3D Calibration on solid elements are to be found in 
publications from general material modelling perspectives [5] or for specific, detailed studies [6]. It is however 
seldom adopted in the industry or even in academia, as it requires extensive testing and tedious work for 
calibrating the required parameters. For that reason, a 2D-calibrated material card is often directly used in a 3D-
discretized analysis, as the engineer has neither time at hand nor data for 3D-calibration available.  
 
With this paper, a study focused on metals is presented, with the aim to give a) more confidence to the use of 2D-
calibrated material cards in volumetric models, b) show straightforward methods for quick adaption for 3D 
analysis and c) examine common GISSMO-type specimen for their stress state in different thicknesses. 
 

The Basics 
Elements in Finite Element Analysis:  
The dominant discretization method in computational structural mechanics is by finite elements - with their basic 
concept of subdividing the domain of bodies, loads and supports into simple, calculable elements of a finite 
number. This enables computation with a finite number of degrees of freedom (DOF), for which a variety of 
methods for spatial discretization are available. From simplified and abstract modelling to a full three-dimensional 
representation of real-world bodies, the model and mesh have to be chosen according to different factors, which 
in the end come down to the engineering judgement of the CAE-engineer. At disposal for geometrical 
discretization are, from a modelling perspective, the simplest 1D elements like beam and truss or discrete elements 
such as a spring or damper. They connect only two nodes together with a set of rules given by the element 
formulation. These 1D elements can represent different bars, beams or pipes, while the finite element idealization 



16th International LS-DYNA® Users Conference Constitutive Modeling 
 

June 10-11, 2020  2 

stays the same. Thus, the element formulation must additionally be provided with the cross-sectional area and 
torsional constants of the real body. Two-dimensional elements connect three or more nodes together to form one 
shell or membrane element, where the third dimension is only given implicitly through the *SECTION card and 
considered depending on the element formulation. Finally, three-dimensional elements are made up out of a 
minimum of five nodes for tetrahedrons or eight nodes for a cubic representation.  
In this paper, elements of the shell, t-shell and solid type with different formulations are examined within 
LS-DYNA with a focus on their response and their limits.  
The designated use of shell elements is in parts where the thickness is significantly smaller than the other 
dimensions of the part: thin parts of the chassis, containers or casings for batteries for example. The real part is 
discretized at a reference surface from which thickness is defined through the definition in the keyword of the 
corresponding section. Shell elements are effective and can reduce time for computation, their underlying theory 
however only allows a plane stress response. All through-thickness stresses are neglected and are not calculated, 
i.e. 𝜎𝜎𝑧𝑧𝑧𝑧 = 0; a loading from top or bottom of the element is not possible and cross-sections through the thickness 
remain straight. In this publication shell element type 2 and 16 are used, which are based on Reissner-Mindlin 
theory [7], where shear deformations are possible. The shell’s deformations are described only by the deformation 
of the reference-surface and its rotation. Elements can generally be categorized by their formulation and their 
discretization. Type 2 and 16 shells are so-called thin-thin shells: both formulation and discretization are thin, i.e. 
two dimensional. Type 2 is an under-integrated formulation with only one integration point on the reference 
surface, where stresses are calculated. It is 2-3x faster than type 16 with 4 integration points, but is also prone to 
hourglassing modes, which type 16 cannot exhibit. A detailed look on shell theory gives [8], a good overview on 
elements specifically for LS-DYNA is presented in [9]. 
Another shell-like element are the thin-thick shells, which have a three-dimensional discretization, but are based 
on Reissner-Mindlin kinematics. The constitutive law is thus again limited to plane stress but has advantages 
when transverse shear and bending is investigated. They exhibit no observable locking problems. These shells 
can be accessed via *SECTION_TSHELL by choosing ELFORM 1 or 2, which are under integrated and fully 
integrated respectively.  
To enable calculation of deformations in thickness direction, a thick-thin shell is implemented and enables a 
loading of the shell surface with a thickness stretch and a continuous thickness progression. This requires a three 
dimensional, i.e. thick material description, while the representation stays flat. These shells are therefore called 
thick-thin shells and are included in part of the studies here. Type 26 is chosen to represent this class in this paper 
as it based on the robust, often-used type 16 from *SECTION_SHELL. 
Another step towards a fully formulated solid-element is a thick-thick shell, as implemented in 
*SECTION_TSHELL type 3 and 4, which are under- and fully integrated respectively. They have a volumetric 
discretization and the constitutive formulation is three-dimensional. In contrast to solid elements, it is 
implemented with respect to efficiency based on a co-rotational implementation of shell type 2, specifically suited 
for thicker shells with large deformations while locking phenomena are suppressed. They can have multiple 
through-thickness integration points, whereas solid elements have a maximum of two and have to be stacked. [10] 
Following this are finally the solid elements with a complete three-dimensional formulation and discretization, 
where no reduction and simplification from shell theory is used. In this paper *SECTION_SOLID types 1, an 
under-integrated formulation with a constant stress approach and type 2, a selective-reduced (S/R) integrated 
formulation is considered. The former is rather efficient and is suitable for large strains, the latter however requires 
no hourglass control. This paper in part also considers the modifications in types -1 and -2, which result in an 
improvement of accuracy with an elongated runtime. [10] 
The following Table 1 gives an overview on the most important features and descriptors of the elements used 
here. For further reading, [10] provides a detailed look into the formulations, while [9] and [11] shall be 
recommended for an overview suitable for LS-DYNA-specific engineering purposes. Timings in Table 1 are the 
Clock(seconds) timing as per d3hsp from a single element in tension of same size and thickness for a *MAT_024 
without failure and same displacement, normalized to shell 16 as the reference. 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the clock time used for 
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element processing and indicates a rising computational time for thicker discretization and formulation. It also 
shows that seldom used, special element formulations, e.g. T-shell 3 or solid -2 are slower due to a more complex 
formulation or might not be tuned for speed. The total clock time 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 is however not as severely affected, as 
the element processing is only a part of the complete simulation. However, for runs with more elements, the ratio 
will increase. 
 
Table 1: Overview of investigated element formulations with characteristic features 

 Shell T-Shell Solid 
 2 16 26 1 2 3 5 1 2 -1 -2 
Formulation thin thin thick thin thin thick thick thick thick thick thick 

Discretization thin thin thin thick thick thick thick thick thick thick thick 
Integration under full full under full under full under S/R under S/R 

𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 0.46 1 1.7 5.7 9.7 37.6 3.6 3.7 8.0 9 19.4 
𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒆𝒆 1 1 1.02 1.56 1.71 2.88 1.51 1.65 1.84 1.85 2.25 

 
Describing the Stress State  
It would be bulky to use tensor notation with six components to describe stress and strain states of the elements 
in the following investigations. Using the three principal stresses (𝜎𝜎1, 𝜎𝜎2, 𝜎𝜎3), i.e. the Haigh-Westergaard space, 
is a way of representing the stress state. The basis is the space of principal stresses, in which each stress state can 
be represented. In this space, a cylindrical coordinate system (𝑧𝑧, 𝑟𝑟, Θ) can be denoted and is useful for easy 
representation of stress state: 
The z-axis is defined where principal stresses are equal, i.e.  𝜎𝜎1 = 𝜎𝜎2 =  𝜎𝜎3, it thus indicates the hydrostatic 
component and is defined as  

 𝑧𝑧 = √3 𝜎𝜎𝑒𝑒 =  𝐼𝐼1

√3
. (1) 

where 𝐼𝐼1is the first stress invariant and 𝜎𝜎𝑒𝑒 is the mean hydrostatic stress defined by 
 𝜎𝜎𝑒𝑒 = 1

3
(𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3). (2) 

The r coordinate corresponds to the magnitude of the deviatory component, which can be described by means of 
equivalent stress: 

 𝑟𝑟 = �2 3⁄ 𝜎𝜎𝑒𝑒𝑒𝑒 = �2𝐽𝐽2. (3) 
Where 𝐽𝐽2 is the second independent deviatory invariant and 𝜎𝜎𝑒𝑒𝑒𝑒 is the von Mises- or equivalent stress: 

 𝜎𝜎𝑒𝑒𝑒𝑒 = 1
√2

�(𝜎𝜎1 − 𝜎𝜎2)2 + (𝜎𝜎2 − 𝜎𝜎3)2 + (𝜎𝜎3 − 𝜎𝜎1)2 = �3𝐽𝐽2., (4) 
The last spacial coordinate Θ is the Lode angle. It fully defines the stress state on the deviatoric plane spanned by 
z and r. The origin of the angle is defined in the context of LS-DYNA by 

 Θ = 1
3

arccos �𝐽𝐽3
2

� 3
𝐽𝐽2

�
3
2�, (5) 

but can be found in literature defined by positive and negative sine or tangens. Handier than this bulky formulation 
is using the Lode parameter 𝜉𝜉 instead of the angle Θ. It is defined by: 

 𝜉𝜉 = cos(3Θ) =  𝐽𝐽3
2

� 3
𝐽𝐽2

�
3
2 = 27

2
𝐽𝐽3

𝜎𝜎𝑒𝑒𝑒𝑒
3 , (6) 

which is a normalization of the third deviatoric invariant using equivalent stress. The possible range of 𝜉𝜉 is 
between -1 and 1. 
The  important idea to take away from this is, that everything in this cylindrical system can be expressed by  𝑧𝑧, 𝑟𝑟, 𝜉𝜉 
which is derived from the invariants 𝐽𝐽2, 𝐽𝐽3, 𝐼𝐼1 or from  𝜎𝜎𝑒𝑒, 𝜎𝜎𝑒𝑒𝑒𝑒 and 𝐽𝐽3. With these, the stress state at a material 
point can be exactly defined. For a characteristic stress state however the magnitude can be disregarded – a tensile 
stress state for example will be tensile no matter the magnitude – only two independent variables are needed:  the 
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Lode-parameter 𝜉𝜉 and the triaxiality 𝜂𝜂, a dimensionless pressure defined as the ratio of mean, hydrostatic pressure 
and von Mises stress: 

 𝜂𝜂 =
𝜎𝜎𝑒𝑒

𝜎𝜎𝑒𝑒𝑒𝑒
=

1
3√3

𝐼𝐼1

�𝐽𝐽2
 (7) 

More importantly, the afore introduced shells with a thin constitutive formulation, can only represent a stress state 
of plane stress. For this two-dimensional loading, only one of the two parameters are needed, as they are connected 
by the following relation for plane stress [12]: 

 𝜉𝜉 = −
27
2

𝜂𝜂(𝜂𝜂2 −
1
3

) (8) 

Here, the Lode parameter 𝜉𝜉 can be expressed using 𝜂𝜂, which thus remains as the sole variable for description of 
a plane stress state (without its magnitude) for shell formulations. 

                     
Figure 1: Characteristic stress states in the 2D triaxiality-Lode-parameter-plane. 

 
From Figure 1 becomes clear that many stress states cannot be represented by thin-formulated shell elements, as 
the possible states are located only on the blue plane stress curve, whereas a three-dimensional stress state can 
take any value of 𝜉𝜉 or 𝜂𝜂. The possible range of 𝜂𝜂 for a plane stress state is − 2

3
<  𝜂𝜂 < 2

3
, as the quotient of 𝜎𝜎𝑒𝑒 and 

𝜎𝜎𝑒𝑒𝑒𝑒 cannot yield any other value when 𝜎𝜎3 =  0. For three-dimensional stress the Range is ℝ - all real numbers. 
Whereas 𝜉𝜉 is always ranged between -1 and 1 for both two- and three-dimensional states. Table 2 gives values of 
triaxiality and Lode parameter for characteristic stress states in the plane stress domain, where again, one of the 
two values would be enough to describe it. 
Table 2: Values of triaxiality and Lode parameter for characteristic 2D stress states (after [13])  

Loading Triaxiality 𝜼𝜼 Lode parameter 𝝃𝝃 

 biaxial compression 2/3 1 

 plane strain compression -√3/3 0 

 uniaxial compression -1/3 -1 

 torsion/pure shear 0 0 

 uniaxial tension 1/3 1 

 plane strain tension √3/3 0 

 biaxial tension 2/3 -1 
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A very Brief Introduction to Material Models in LS-DYNA 
The constitutive formulation couples strains to stresses and needs to be evaluated for each element, as mentioned 
before. As of Version R11, LS-DYNA has material numbers up to 296, with additional options and features that 
can be added to each material model. This highlights the vast options to model materials within the software. Of 
course, many models have very specific purposes, for different classes of materials or special use-cases. In the 
scope of this contribution, material models suitable for metals are used for the investigations, specifically 
*MAT_PIECEWISE_LINEAR_PLASTICITY or *MAT_024 and the additional failure and damage model 
*MAT_ADD_DAMAGE_GISSMO. 
Some elasto-plastic material models are implemented, of which *MAT_024 is probably the best known. This 
model behaves elastically until the von Mises yield condition is fulfilled. It states that the flow behaviour is 
influenced by the shape changing component of the stress tensor only, i.e. it is independent of hydrostatic stress 
𝜎𝜎𝑒𝑒. Thus, plastic flow occurs when 𝜎𝜎𝑒𝑒𝑒𝑒 (see eq.(4)) exceeds a user-defined defined limit value. Afterwards, the 
solver takes a tabulated input of corresponding plastic strains 𝜖𝜖𝑝𝑝𝑒𝑒  and equivalent stresses 𝜎𝜎𝑒𝑒𝑒𝑒  to model the 
plasticity flow curve. Since this model does not consider any accumulation of damage, the failure is abrupt at a 
given maximum plastic strain. *MAT_024 provides a convenient straightforward way of modelling materials 
with a distinct plastic behaviour and is oftentimes considered the “workhorse” of material models in LS-DYNA. 
When materials, like metals, exhibit a much more complex stress-strain response, for example a different plastic 
flow response for different stress states or an anisotropic behaviour, this model reaches its limits.  
There are a few material models which extend *MAT_024. Some, e.g. *MAT_089 or *MAT_187 add strain rate 
dependent failure and add more flexibility in damage and failure modelling. Others offer even more flexibility, 
e.g. *MAT_224, which can model failure strain dependent on triaxiality, i.e. the stress state [14]. However, the 
greatest flexibility offers the phenomenological *MAT_ADD_EROSION with IDAM=1, or in versions from 
R11, *MAT_ADD_DAMAGE_GISSMO [4, 15]. With this “Generalized Incremental Stress State dependent 
damage Model” (GISSMO) all other implemented damage and failure approaches can be modelled. It can for 
example be used to remodel a Johnson-Cook behaviour from *MAT_224. The charm is, that it provides full 
flexibility on the modelling of damage and failure as it offers many features for user-defined control and can be 
added to any base material model having plasticity. Its flexibility is only surpassed by 
*MAT_ADD_GENERALIZED_DAMAGE [16], which comes with even more tuneable parameters on 
anisotropy. Using GISSMO, the user gets the ability to add the following main features to any material model: 

• stress-state, temperature and strain-rate dependent plastic failure strain:  𝜖𝜖𝑝𝑝𝑒𝑒,𝑓𝑓𝑡𝑡𝑓𝑓𝑒𝑒(𝜉𝜉, 𝜂𝜂, 𝑇𝑇, 𝜖𝜖̇), 
• custom accumulation of damage, dependent on strain path: 𝐷𝐷 = (𝜖𝜖𝑝𝑝𝑒𝑒 𝜖𝜖𝑝𝑝𝑒𝑒,𝑓𝑓𝑡𝑡𝑓𝑓𝑒𝑒⁄ )n 
• custom coupling of damage to stress to introduce softening effects at a custom plastic strain onset 
• element-size specific failure strains and softening exponents, i.e. so-called regularization. 

With these features, it can provide exceptional results compared to those cards using a no damage modelling or a 
conventional damage modelling approach [4]. When modelling metallic components with great attention to detail, 
especially for high-dynamic crash loadings there is almost no way around this model. However, this flexibility 
requires an appropriate calibration and validation of nine parameters, three of them defined as functions and not 
only as scalar values. In order to capture a full three dimensional stress state, the failure curve even extends to a 
surface, adding additional parameters [5]. The corresponding parameter identification becomes a non-trivial task 
resulting in tedious work for the manual analytical approach.  
For characterization of a material to be fully described by a GISSMO model, a set of specimens have been 
established to find the best set of parameters by reverse-engineering. For calibration of a shell model the 
commonly used specimens are described in [4] with exact dimensions and drawings for reproduction. As outlined 
there, they are the common ground of specimens from several contributions. They can be distinguished into three 
categories: Small specimen with dimensions of 20 mm width and 60 to 80 mm length with different geometries 
for characterization of multiple stress states. These are: small tensile test for triaxialities starting at 0.33 before 
necking, notched tensile and shear 45° for slightly higher triaxialities between 0.4 and 0.5 and shear 0° for 
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triaxialities near 0. Secondly, the large tensile test similar to DIN EN ISO 6892 with a strain gauge of 80 mm and 
thirdly a deep-drawing-test for a biaxial loading like the Nakajima or Bulge test [4]. The small specimens are 
used, as outlined, for calibrating most parameters of the model: critical and failure plastic strain curves, softening 
parameters and strain-rate dependence if needed. These specimens require a fine discretization, as load-carrying 
sections are around 5 mm. To capture effects like localization after necking, a mesh size around 0.5 mm is 
required. As full-scale simulations of parts or assemblies are discretized with elements 10 times larger, a transfer 
to these sizes must be made. Elements of these scales cannot discretize the geometry of the small specimen 
anymore, thus the A80 specimen is used for upscaling. But as the large elements cannot represent the effects like 
localization after necking in metals, as their dimension is much larger than the size of the effect they shall 
represent, a technique called regularization is employed. Model parameters are coupled to element size with 
scaling factors, so that larger element sizes represent the global behaviour of the component, such as localization 
or crack formation, even if they do not deliver the correct local prognosis. For GISSMO this is the plastic strain 
to failure vs. triaxiality curve and the softening vs. triaxiality curve, which can and have to be scaled depending 
on element size. These parameters have then no longer physical coupling to measured values and are completely 
phenomenological, but the model is still able to globally consider effects smaller than element length.  
To calibrate the GISSMO model for a three-dimensional stress-state, parameters can be described with a lode-
angle dependence, e.g. the plastic strain to failure or the onset of necking. In this case the failure curve (𝜖𝜖𝑝𝑝𝑒𝑒,𝑓𝑓𝑡𝑡𝑓𝑓𝑒𝑒, 𝜂𝜂) 
will turn into a surface and is described by multiple failure curves (𝜖𝜖𝑝𝑝𝑒𝑒,𝑓𝑓𝑡𝑡𝑓𝑓𝑒𝑒, 𝜂𝜂) for different Lode-parameters Θ. 
To test for lode angle dependence, [5] developed a set of specimens which exhibit a specific three dimensional 
stress state away from plane stress. These specimens are very detailed, must be discretized very finely and are 
difficult to manufacture. Thus, we will now have a look on transferring a two-dimensional calibration to a three 
dimensional without no or few extra testing. 
 

Response of the Model in Shell and Solid Elements 
 
The following investigates the response of a 2D-calibrated GISSMO model for a generic metal on shell, T-shell 
and solid elements. At first the response of a single element subjected to different loadings to show the responses 
on element-level, in a second step a rectangular patch made of a limited number of elements is analysed. Results 
have been validated using four separate material cards: two for steel, complex and dual-phase and two for different 
aluminiums. As results discussed here are independent of magnitudes of stress or strain, they will be shown 
qualitatively normalized to the baseline SHL16. All material cards were calibrated using shell discretization on 
the tests introduced in the previous section and regularized for an element-range between 0.5 mm and 10 mm. 
 
Single-Element Responses 
The numerical simulation in this section is limited to single elements under tensile, compressive and shear loads. 
With this, there are no interactions between adjacent elements, the strain path is controllable, and the post-
processing is significantly simpler. A single element test is generally used to verify and analyse the behaviour of 
the material model with the calibrated values. The influences of the input parameters on the stress-strain response 
can be checked and potential flaws eliminated on this level. In the crash simulation, grid coarseness in the order 
of 3 to 5 mm are currently used. Therefore, rectangular elements with sizes of 0.5 mm, 1 mm, 2.5 mm, 3 mm, 
5 mm, 8 mm and 10 mm were simulated here. 
Figure 2 shows the results of two different configurations: thin elements with a thickness of 1 mm for all sizes. 
On the right all elements are cubic, i.e. thickness is equal the element edge length. Stress is shown normalized to 
the maximum stress of shell formulation 16. The figure includes shell formulations 1,2 and 16; solid formulations 
-2, -1, 1, 2 and thick shell formulations 1 and 2. Shell formulation 26 (thick-thin) is not plotted, as it follows the 
progression of the thin-thin shells at first and then diverges towards the solid progression of corresponding size. 
Thick shell formulation 3 is also not shown, as is has an erroneous progression after the onset of necking. Both 
of which might be avoided by further parameter tweaking but shall not be the focus here. 
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The different behaviour of the different sizes results from regularization, which was introduced in the previous 
chapter, and enables the correct response of a specimen or part when discretized with large elements. Shell 
formulations show no change in response, no matter the thickness, as they have only a virtual thickness. Element 
size for regularization is calculated by 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 = �𝑙𝑙1𝑙𝑙2, where 𝑙𝑙1 and 𝑙𝑙2 are the length of the two axis of the 
element.  
Solid formulations give the same response as shell elements only when they are cubical. For non-cubic (i.e. flat 
or thick) elements, they give a different response with slower damage and higher failure strains (see Figure 2, 
left). This is again attributed to the calculation of the calculated element size 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡, which is equal to �𝑙𝑙1𝑙𝑙2𝑙𝑙3

3 . 
With this, wrong regularization factors are used for scaling of the plastic strain to failure and the fade-exponent, 
which leads to a different answer of a solid element compared to the calibrated shell element, when it is not cubic.  

 

   
Figure 2: Comparison of single-element of different size (0.5 - 10 mm) tensile response of a generic material card.  

Left: response of 1 mm thick elements; Right: response of cubic single elements 

 
The same behaviour is observed for other stress states than tension with the exception when SHRF or BIAXF are 
set near 1 or -1 in the material card. This disables regularization for shear or biaxial stress state or at the 
intersection of the failure curve with the instability curve respectively and does thus not present this effect for 
these states. 
To match the response of the solid element to the calibrated response of the shell elements, regularization must 
be adapted, so that the calculated element size of the solids is matched with the regularization factors determined 
for the shell element sizes. For example, a 4 x 4 x 2 mm shell would have an 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 of 4 mm, whereas the 
element size of a solid of same dimension would yield 3.175 mm. The tables in the material card have thus to be 
updated depending on element thickness of the solid – only then solids yield the same results as the calibration.  
Another important factor is ISTUPD, which shall be discussed very briefly. This parameter in 
*CONTROL_SHELL is determining if a thickness update is considered in deformable shells. Figure 2 shows 
results for ISTUPD=3, as with this setting all elements give same results for the cubic case and for the thin 
elements t-shells 1&2 even give the same result as shells. This setting causes a change in the thickness, when the 
elements are membrane strained, which is important for the stress response as the load-carrying area changes. 
Setting ISTUPD to 0, thickness changes are not calculated, which makes thin formulations respond with a higher 
maximum stress, while keeping the correct failure strain. This results in an overestimation of maximum internal 
energy to failure. Setting ISTUPD=4 is recommended for crash analysis [14] and uses only plastic strains for 
calculation of the thickness change, which makes the shell formulations (1,2,16) respond as the solids do. But 
thick shells (1&2) do still respond with a higher energy. ISTUPD=3 chooses the ‘correct’ update for both shell 
and t-shells, using ISTUPD=1 for shell elements and ISTUPD=2 for thick shells. The correct ISTUPD shall thus 
be set for the correct element type to give the calibrated response.  
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Behaviour of Multiple Elements in a Patch 
A structure will be represented by more than only one element in most cases. A step towards a coupon specimen 
is a patch of elements, where a rectangular patch made up of several elements is subjected to defined loading. 
Using the material models with the adapted, fitting regularization, a patch with dimensions 30 x 30 mm² was 
subjected to a tensile loading (see Figure 3, left top). It was discretized by shells and t-shells of thickness 3 mm, 
as well as with three solids over the thickness. Compared to the single-element test, the load path of the elements 
does now change over the course of loading, in contrast to the single element test, where the stress state stays 
constant over the simulation. Elements in the middle of a patch in tension will be subjected to a more complex 
stress state, as neighbouring elements now have an influence on each other and the whole coupon will contract, 
resulting in a biaxial stress state in the centre elements (see Figure 3, left bottom).  
The different element formulations, while showing same behaviour in a single element test, now exhibit a 
differing response in the patch. In the elastic region responses are exactly alike as expected, whereas maximum 
stress and failure strain can differ. To be able to compare the different element sizes and formulations, Figure 3, 
right compares the maximum internal energy of the patches until failure. This represents the area under the stress-
strain-curve, i.e. higher stresses and/or higher strains to failure will lead to a higher internal energy. The energy 
has been normalized by the maximum internal energy of shell 16 with 1 mm element length, as only a qualitative 
comparison is needed here.  

 

 

 

 

 

Figure 3: Right: Normalized maximum internal energy (to shell 16, 1.0 mm) vs. element size for patches of different element types and sizes; 
Left, top: Solid coupon, 5mm with load introducing beams in green; Left, bottom: 5 mm and 0.5 mm (lilac) patch at same displacement. 

 
Figure 3,right gives insights into the response of the different formulations: The fully integrated shell 16, which 
shall be the baseline, shows a response independent of element size, the standard deviation is only 0.065 kJ/kJ, 
with a 5 mm element size however responding 14% stiffer than 1 mm. It indicates regularization is successfully 
accomplished and calibrated in this material card for shell 16 but might be tweaked for larger element sizes. Both 
shell formulations, under integrated (2) and fully integrated (16) are on average 10% apart, with the under 
integrated patches being lower and for 2.5 mm the lowest with 20% more compliance. Shell 2 give a slightly more 
divergent response to element size; its standard deviation is 0.07 kJ/kJ. The selective-reduced integrated solid 
formulation type 2 is on average 34% stiffer than shell 16, with a low standard deviation of 0.04 within the 
formulation in this range of element sizes. The under integrated solid formulation type 1 has a much more 
divergent behaviour (std. dev.: 0.3) and stiffens with element size. Its mean difference from shell 16 is 82 %. The 
most extreme values are reached with thin-thick shell formulation 1, where stiffening occurs, contrary to solid 1, 
with smaller element sizes. Its mean divergence by 52% from shell 16 is both large and misleading, as it shows 
very low deviation at sizes around 3 mm (10% dev.) but is very high for 0.5 mm (129% dev.). This is reflected in 
the standard deviation of 0.45 for t-shell 1. The thin-thick formulation 2 is the most compliant with only 32% of 
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the stiffness of shell 16 on average. Standard deviation of 0.07 kJ/kJ shows however good independence of 
element size, which could promise good results when recalibrating specifically for this formulation.  
 

Transferring 2D-calibrations to 3D 
 
The method of adapting the regularization for solid formulations is a very convenient and quick method to get the 
same answer from a material card as shell formulations would give. This means, the calibration will still be valid 
if - and most certainly only if - the stress state stays close to the plain stress state. For thicker parts, the failure 
surface can be constructed by using additional test geometries which produce a stress state further away from 
plane stress. These can be for example specimens as introduced by Basaran [5]. Furthermore, assumptions on 
how the 2D failure curve can be used to construct a 3D failure surface analytically, without further testing, have 
been used by Bai and Wierzbicki [13]. Here, three failure curves for distinct lode-parameters, as suggested in 
[17], are connected by a quadratic formulation to generate a failure surface. This has been adapted in Schau-
wecker et.al. [6], where additional assumptions or failure under large pressure triaxialities were made. Tests from 
plane-strain specimens [4] or three-dimensional specimens [5] can be used as support points for fitting analytical 
formulations or fitting a mathematical representation of bi-splines, as shown in [5]. These methods (auto-adaption 
of regularization, analytical method for fracture locus description as well as mathematical bi-spline best fit) have 
been implemented to transfer 2D cards automatically for solid formulations. Underlying are however assumptions 
on the failure surface for untested stress states and may lead to a false representation for these stress states. To 
check, it is best to determine how far apart the stress states in the final part are from stress states used for 
calibration and use fair judgement on how dependable the fracture points are. 
The characteristic deviation 𝑘𝑘 from plane stress shall be introduced here. The distance of the stress state from the 
corresponding plane stress state can be used: 

 𝑘𝑘 = |𝜎𝜎2𝐷𝐷 − 𝜎𝜎3𝐷𝐷| (9) 
 
where 

 𝜎𝜎2𝐷𝐷 = �
𝜂𝜂

− 27
2

𝜂𝜂 �𝜂𝜂2 − 1
3
��   ;  𝜎𝜎3𝐷𝐷 = �

𝜂𝜂
𝜉𝜉� (10) 

is the plane strain stress state determined by the current triaxiality and the fully three-dimensional stress state 
respectively. 
 

A closer look at the stress state in GISSMO-style specimen 
 
The specimens, as summarized in [4], are used for 2D-calibration normally, i.e. the specimens are discretized 
using shell elements. A closer look on the stress state using simulations of these specimen shall now reveal 
possibilities in using these 2D specimen for a description of a 3D failure surface. The focus is the A80, mini-
tension (MT) and notched-tension (NT) specimens, which have been simulated with varying thicknesses, whereas 
the rest of the geometry has been kept original. To be able to represent the geometries, a dimensionless thickness 
𝛽𝛽 is introduced, which is the thickness 𝑡𝑡 normalized by the width 𝑤𝑤 of the load-carrying part of the specimen. 

 𝛽𝛽 =
𝑡𝑡
𝑤𝑤

 (11) 

To be able to evaluate the stress state at different points in the specimen, up to seven different sets of elements in 
the load-carrying cross-section of the specimen have been selected and their properties are evaluated. If a set is 
made up of more than one element, values must be averaged. For the averaging of sets and for determining global 
averages of the properties, the same weighting function 𝑔𝑔 as for damage accumulation within the GISSMO 
model  [4] is used:  
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 𝑔𝑔 =
𝑛𝑛

𝜖𝜖𝑝𝑝𝑒𝑒,𝑓𝑓𝑡𝑡𝑓𝑓𝑒𝑒
𝑒𝑒 𝜖𝜖𝑝𝑝𝑒𝑒

𝑒𝑒−1 =
𝑛𝑛

𝜖𝜖𝑝𝑝𝑒𝑒,𝑓𝑓𝑡𝑡𝑓𝑓𝑒𝑒
𝐷𝐷

𝑒𝑒−1
𝑒𝑒  (12) 

Where 𝑛𝑛 is the damage exponent as set in the material card, 𝜖𝜖𝑝𝑝𝑒𝑒,𝑓𝑓𝑡𝑡𝑓𝑓𝑒𝑒 the plastic strain to failure for the current 
stress state, as defined by the failure curve/surface 𝜖𝜖𝑝𝑝𝑒𝑒,𝑓𝑓𝑡𝑡𝑓𝑓𝑒𝑒(𝜉𝜉, 𝜂𝜂, 𝑇𝑇, 𝜖𝜖̇) and 𝐷𝐷 is the current Damage. The weighting 
of any variable 𝑥𝑥, e.g. 𝜂𝜂 or 𝜃𝜃, is then obtained by 

 �̅�𝑥 =
1
𝜇𝜇

� 𝑔𝑔𝑓𝑓𝑥𝑥𝑓𝑓

𝐼𝐼

𝑓𝑓=1

 (13) 

Where i and I is the current and final timestep respectively or current and number of elements respectively and 
𝜇𝜇 is the sum of the weighting function: 

 𝜇𝜇 = � 𝑔𝑔𝑓𝑓

𝐼𝐼

𝑓𝑓=1

 (14) 

 
In a first study, the element size is kept constant for different thicknesses, i.e. the tests as shown in Table 3 are 
simulated with varying number of elements of size 0.5 mm through thickness. Figure 4 shows the cross section 
of the load-bearing part of the mini tension (MT) specimen for different dimensionless thicknesses with element 
size of 0.5 mm and coloured element sets for evaluation. A80 and notched tension (NT) are partitioned similarly.  
 
 
Table 3: Simulated configurations with constant elementation of 0.5 mm for different thickness-width-ratios 

A80 𝜷𝜷 0.05 0.15 0.2 0.4 0.6 0.8 1 
A80 no. elements 1 3 4 8 12 16 20 

Mini-/notched tensile 𝜷𝜷 0.1 0.3 0.4 0.6 0.8 1 
MT/NT no. elements 1 3 4 6 8 10 

 

 
Figure 4: Evaluated sets for different thicknesses; here: for the mini tension (MT) specimen. 

 
For these specimen the average values of triaxiality and Lode parameter, weighted by the GISSMO weighting 
function (12), of all elements in the sets are plotted for the mini tension specimen in Figure 5. From left to right, 
the thickness of the specimen increases from 𝛽𝛽 = 0.1, i.e. 0.5 mm to 𝛽𝛽=1, i.e. 5 mm. Specimen were simulated 
with fully integrated solid elements 2. The regularization in the material card has been adapted. The mean 
weighted values of the set over the plastic domain are marked with a ◆ and final failure of the first element in the 
set with ×. Due to the constant element size in this setup with a constant cubic element size of 0.5 mm, the number 
of sets grows with rising 𝛽𝛽. 

𝜷𝜷 = 0.6 𝜷𝜷 = 1.0𝜷𝜷 = 0.8𝜷𝜷 = 0.4𝜷𝜷 = 0.3𝜷𝜷 = 0.1
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Figure 5: Stress states for mini tensile specimen from 𝛽𝛽=0.1, 0.3 and 1 of the sets from Figure 4. 

 
The growing three-dimensionality, i.e. deviation from plain stress (marked black in Figure 5), with rising 
ratio of thickness/width becomes apparent. While for thin specimen, the stress state is close to the plane stress 
state, as they were designed by [4], the distance from the 2D stress state grows with rising aspect ratio 𝛽𝛽 and 
plastic strain 𝜖𝜖𝑝𝑝𝑒𝑒. For 𝛽𝛽=0.1 the mean weighted values are on the plane stress curve, for 𝛽𝛽=1, they have migrated 
towards a three-dimensional state. The mean weighted values of triaxiality and Lode parameter are closer to the 
plane stress state than the point of failure, as for most of the virtual test, the stress state is closer to the plane stress 
state – only for higher plastic strains, they diverge. Large jumps in the progression of the curves result from other 
failing elements, which results in a shift of the flux of force and a change in loading, i.e. stress state.  
When discretizing the thin specimen with smaller elements the evaluation of all seven sets as in Figure 4, right is 
possible. In this configuration all seven sets yield a stress state close to the plane stress. The fine resolution i.e. 
gives a more detailed look into the thin specimen and reveals stress states within the boundaries set by coarser 
discretization. The observed effects in Figure 5 and Figure 6 are thus not from rising element quantity and better 
resolution, but can be attributed to the rising thickness. 
This observation is valid for all specimens under investigation here: the mini tensile, the A80, the notched tensile 
specimen. Figure 6 shows average triaxialities vs. average Lode parameter for each set from all specimen from 
Table 3. The rising three-dimensionality becomes even more clear from this. The thick specimen cover the region 
as axisymmetric notched round specimen from [5]. Additionally, each of the three specimens occupy a specific 
region in the stress state space. 
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Figure 6: Found average triaxialities vs. average Lode parameters for shown specimen from 𝛽𝛽=0.5-1 of all sets from Figure 4. 

 
Conclusion 

 
To conclude this small study, an automated adaption of the 2D regularization from shells to the new solid 
thickness can be recommended as the least action to use two-dimensional material cards with thick formulations. 
It provides a quick and straightforward measure to make the answer of the card closer to the calibrated results for 
solids.  
The analysis of multiple elements in a patch provides a method to check thin and thick formulations and can be 
used for a recalibration of GISSMO parameters by tuning the parameters, best by means of an optimization. This 
enables an even better agreement of response of both dimensions and highlights possible erroneous energy 
answers of specific formulations and helps to choose appropriate element formulations for part analysis. 
When no specific testing with dedicated specimens exhibiting a three-dimensional stress state is undertaken, the 
presented analysis gives the three-dimensional stress states for 2D-geometries, which can be used as points for 
construction of the 3D failure surface by existing methods. Additionally, it enables the use of well-known, easy 
to manufacture geometries with larger thicknesses for supplementary fulcrums for the failure surface obtained 
from one additional test.  
Using an unaltered 2D material card for 3D analysis can thus be advised against, the least measures to be 
automated is to adapt the regularization table to the solid thickness. This could mean more material cards for the 
same material when different thicknesses are used in a simulation. The generation of analytical/mathematical 
failure surfaces on three-dimensional stress states of GISSMO-style specimen has also been discussed and 
automated. 
In a next step, as an outlook, the actions for dimensional transfer presented here can be used for analysis on the 
level of components. This has to be validated with testing of thick parts to show the performance of each of the 
steps on dimensional transfer outlined here.  
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