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Abstract 
 
In the paper, we present an integrated data-driven modeling framework based on process modeling, material homogenization, 
mechanistic machine learning, and concurrent multiscale simulation. We are interested in the injection-molded short fiber reinforced 
composites, which have been identified as key material systems in automotive, aerospace, and electronics industries. The molding 
process induces spatially varying microstructures across various length scales, while the resulting strongly anisotropic and nonlinear 
material properties are still challenging to be captured by conventional modeling approaches. To prepare the linear elastic training 
data for our machine learning tasks, Representative Volume Elements (RVE) with different fiber orientations and volume fractions are 
generated through stochastic reconstruction and analyzed using the LS-DYNA® RVE package. More importantly, we utilize the recently 
proposed Deep Material Network (DMN) to learn the hidden microscale morphologies from data. With essential physics embedded in 
its building blocks, this data-driven material model can be extrapolated to predict nonlinear material behaviors efficiently and 
accurately. Through the transfer learning of DMN, we create a unified process-guided material database that covers a full range of 
geometric descriptors for short fiber reinforced composites. Finally, this unified DMN database is implemented and coupled with 
macroscale finite element model in LS-DYNA to enable concurrent multiscale simulations. From our perspective, the proposed 
framework is also promising in many other emergent multiscale engineering systems, such as additive manufacturing and compressive 
molding. 
 

 
1. Introduction 

 
Many current applications in computer aided engineering require an integration of material models at multiple 
length scales. The complexity comes from the interactions among the fine-scale material phases that vary with 
the manufacturing process.  Due to simplicity and efficiency, micromechanics-based analytical methods (Eshelby, 
1957; Mori and Tanaka, 1973; Nemat-Nasser and Hori, 2013) are widely used to approximate the overall material 
behaviors, but their fundamental assumptions usually regard simplified microstructural morphologies and 
material models. On the other hand, Representative Volume Element (RVE) with high-fidelity microstructures 
and nonlinear material behaviors can be analyzed using Direct Numerical Simulations (DNS) tools, such as Finite 
Element (FE) and Fast Fourier Transformation (FFT)-based methods. In a typical concurrent multiscale 
simulation, every material point in a macroscale FE model is coupled with a corresponding discretized RVE in 
the microscale. Depending on the type of the microscale method, it is often referred to as FE2 (Feyel and 
Chaboche, 2000; Kouznetsova et al., 2002; Feyel, 2003) or FE-FFT (Spahn et al., 2014; Kochmann et al., 2018). 
However, high CPU time and memory are required to solve these models at different scales simultaneously, which 
is not affordable if a large-scale model is considered. 
The rise of Machine Learning (ML), especially deep learning based on neural networks, has been continuously 
advancing the frontier of materials modeling and multiscale simulations. Although the idea of using data-driven 
models to discover hidden physical relationships and enhance material predictions has been around for decades 
(Ghaboussi et al., 1991; HKDH, 1999), its popularity was limited mainly due to the lack of computational 
resources. However, recent evolution of computer hardware systems stimulates the renaissance of many deep 
learning algorithms (Lecun and Bengio, 1995; Hochreiter and Schmidhuber, 1997). Meanwhile, it allows 
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researchers to explore new ML architectures and algorithms much more effectively (Goodfellow et al., 2014; He 
et al., 2015), including those designed for materials modeling and multiscale simulations (Liu et al., 2019a; Peng 
et al. 2020). 

1.1. Goals of the paper 
The main goal of this paper is to present an integrated data-driven modeling framework based on process 
modeling, material homogenization, mechanistic machine learning, and concurrent multiscale simulation. We 
consider the simulation to be “intelligent” in the sense that the composite database can make predictions for new 
microstructures and nonlinear material properties in a non-intrusive way, and the selection of materials models is 
automatically informed by the manufacturing process. We expect this framework to be applicable to many 
multiscale engineering systems, such as composite molding, additive manufacturing, and metal forming. 
The part of mechanistic machine learning for materials modeling is based upon our recent works on Deep Material 
Network (DMN) (Liu et al., 2019a; Liu and Wu, 2019). The key features of DMN are the physics-based building 
block with interpretable fitting parameters, extrapolation capability for material and geometric nonlinearities with 
only linear elastic training data, and efficient inference with a small number of degrees of freedom. In (Liu et al., 
2019b), a transfer-learning approach is proposed to generate a unified set of DMN databases that covers the full-
range structure–property relationship. Moreover, DMN enriched by cohesive layers has also been developed for 
interfacial failure analysis (Liu, 2020). For the first time, we will couple DMN with macroscale FE models for 
concurrent multiscale simulation. 
We will focus on short fiber reinforced composite (SFRC), which we see as an exemplar of multiscale systems 
with broad industrial applications. For example, the injection-molded SFRC becomes increasingly attractive for 
lightweight material systems in the automotive industry. However, reliable numerical prediction of SFRC 
products remains challenging. The nonlinear and anisotropic properties of SFRC are not only affected by the basic 
properties of each constituent but also strongly influenced by the fiber orientation. Meanwhile, process parameters 
(e.g., part geometry, position of injection gates, pressure/temperature of the mold, and filling time, etc.) can 
control the flow of fibers dispersed in the polymer melt, leading to inhomogeneous distribution of fiber 
orientations in the finished parts (Mortazavian and Fatemi, 2015; Hessman et al., 2019).  
The remainder of this paper is organized as follows. In Section 2, the proposed data-driven framework to integrate 
manufacturing process and mechanistic machine learning is discussed. In Section 3, we use deep material network 
to learn a series of short fiber reinforced composites, and we apply the transfer learning approach to derive 
intermediate material database within the process-guided microstructure space. Examples of concurrent 
multiscale simulations with highly nonlinear material properties are given in Section 4. A brief summary is 
provided in Section 5. 

1.2. Previous work 
Many ML or data-driven methods have been proposed for materials modeling and multiscale simulations. The 
training data can come from either physical experiments or simulations. One way of mining the data is to perform 
model reduction on the DNS model of RVEs, such as proper-orthogonal decomposition (Yvonnet and He, 2007; 
Goury et al., 2016; Fritzen and Kunc, 2018; Rocha et al., 2020), self-consistent clustering analysis (Liu et al., 
2016; Liu et al., 2018b; Yu et al., 2019; Gao et al., 2020). Methods have also been formulated based on available 
stress-strain data – e.g., Gaussian process modeling (Chen et al., 2018; Bostanabad et al., 2018), model-free 
approaches (Kirchdoerfer and Ortiz, 2016; Ibanez et al., 2018; Eggersmann et al. 2019; He and Chen, 2019), 
feedforward neural networks (Le et al., 2015; Fritzen et al., 2019; Lu et al., 2019), recurrent neural networks 
(Wang and Sun, 2018; Ghavamian and Simone, 2019; Frankel et al., 2019), and graph/convolutional neural 
networks (Frankel et al., 2019; Vlassis et al., 2020). We consider DMN (Liu et al., 2019a; Liu and Wu, 2019; Liu 
et al., 2019b; Liu, 2020) to be a blend of both approaches: It serves as a reduced-order RVE model while the 
training only requires stress-strain data. 
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In terms of injection-molded SFRC, it has been shown that neglecting the process-induced material anisotropies 
often leads to incorrect prediction of structural failure mode of components (Steinberger et al., 2017), while 
incorporating every single fiber within a FE model at the structural level will result in prohibitive computational 
cost. Therefore, upscaling microscopic material information to obtain homogenized material properties via 
analytical micromechanics approaches (Müller and Böhlke, 2016; Wu et al., 2020) has been quite common for 
SFRC, where the fiber distributions are characterized by fiber orientation tensors (Advani and Tucker III, 1987; 
Wang et al., 2018). Along this line, (Adam et al., 2009; Calmels, 2018) imported fiber orientation from injection 
molding software (e.g., Moldflow, Moldex3D) as an input to the micromechanical software DIGIMAT, which is 
called by LS-DYNA at each time step to perform material homogenization for the macroscopic stress responses. 
(Steinberger et al., 2017) calibrated a Mori-Tanaka mean-field homogenization-based anisotropic material model 
(*MAT_215 of LS-DYNA) against experimental data of the specimen with different fiber orientations. They also 
performed component-level finite element simulations in LS-DYNA with consideration of fiber distributions. The 
results demonstrated the effectiveness of the process-integrated multiscale simulation approach.  
Nonetheless, improvements to the micromechanics-based material model are needed to reduce deviations from 
experimental results. While significant progress is made toward multiscale modeling of SFRC products, the 
highly nonlinear behaviors of SFRC cannot be fully captured through analytical models, which are subject to 
several assumptions regarding simplified microstructures and material behaviors. Sometimes, the refined 
analytical models are accommodated specially for SFRC and cannot be easily generalized to other types of 
material systems. To enhance the predictive capability of multiscale methods, there has been an increasing interest 
in using DNS to analyze RVE with high-fidelity microstructures. However, DNS tends to be too expensive when 
used during the entire concurrent multiscale simulation (e.g. FE2, FE-FFT) process, so we propose to employ 
DNS only during an offline training stage to generate training data for ML purposes.  
On the other hand, it is desirable to reduce the number of RVE sampling points. The heterogeneous nature of 
SFRC structures requires the construction of a huge number of FEA models for RVEs with different 
microstructures and fiber distributions. Other than computational cost, generation of high-quality three-
dimensional meshes for these complex RVEs will be extremely tedious and time-consuming. To this end, (Köbler 
et al., 2018) proposed to reduce the fiber orientation phase space to a triangle, which is further discretized by a 
fine triangular mesh. Each nodal point of the triangular sub-cell is linked to a material model with a unique fiber 
orientation, which is generated by FFT-based computational homogenization during the offline stage. The 
material behavior in the online structural analysis is estimated by mapping the fiber orientation tensor to the fiber 
orientation triangle and interpolating the material responses associated with three vertices of each sub-cell. In our 
work, a similar sampling approach will be adopted. 
 
 

2. The data-driven framework 
 
Predictive multiscale simulation has been a long-standing challenge for various composite material systems due 
to their hierarchical structures that span multiple length scales. At the same time, the manufacturing process 
usually introduces spatially varying microstructures with local anisotropy and property difference, which need to 
be captured in the performance analysis of the final part. An ideal material model should be sensitive to these 
manufacturing-induced variations, and also accurately predict the overall physical responses in an efficient 
manner.  
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Fig. 1. The data-driven framework for multiscale simulation of injection-molded short fiber composites. 

 
We propose a data-driven framework to integrate the manufacturing process and performance analysis based on 
mechanistic machine learning techniques. In Fig. 1, we demonstrate the framework for the injection-molded short 
fiber composite, and the ultimate goal here is to inform the structural failure analysis with the material 
microstructure resulting from injection molding simulation. Given the choices of molding shape and different 
process conditions (e.g., thermal loadings, positions of the injection gates, etc.), a typical molding simulation 
(Stage-1) is able to predict the local fiber orientation and residual stress based on the estimation of interactions 
between fibers and fluid flow (Wang et al., 2018). After the mapping from the molding mesh to the structural 
mesh, we can then query the composite material database based on the projected information at each integration 
point to get the customized material model for performance analysis. 
The construction of the composite material database starts from an offline training data generation (Stage-2). 
RVEs are first reconstructed under different geometric descriptors, such as fiber orientation, fiber length, aspect 
ratio, and phase volume fraction. Samples are randomly generated in a design space spanned by these descriptors, 
and their ranges are defined either by the theoretical bounds, or from experimental observations. For example, we 
use the second-order symmetric fiber orientation tensor 𝐀𝐀3×3 (Advani and Tucker III, 1987) to represent the 
distribution of fiber orientation. Through eigen-decomposition, the rotation-free sampling space of the fiber 
orientation tenser is fully defined by the principal terms  𝑎𝑎11, 𝑎𝑎22, and 𝑎𝑎33, with 𝑎𝑎11 ≥ 𝑎𝑎22 ≥ 𝑎𝑎33 and 𝑎𝑎11 +
𝑎𝑎22 + 𝑎𝑎33 = 1. Meanwhile, the ranges of the fiber length, aspect ratio, and volume fraction can be determined 
from manufacturing data or experimental microscopy images.  
For each RVE model, we build a training dataset by assigning different combinations of material properties to the 
fiber and matrix phases (Liu et al., 2019a; Liu and Wu, 2019). The purpose here is to explore sufficient cases of 
phase contrast and material anisotropy for the material network to learn the topological representation. The 
training of DMN only requires linear elastic RVE data, but it can be extrapolated to predict nonlinear material 
behaviors in the online stage. As a result, the inputs of each training data point are the stiffness tensors of the fiber 
and matrix phases, and the output is the homogenized stiffness tensor of the composite through a set of linear 
elastic RVE analyses under 6 orthogonal loading directions. We use the LS-DYNA RVE package (Liu et al., 
2018a) to perform the RVE analyses. Specifically, the “*RVE_ANALYSIS_FEM” keyword is utilized to define 
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the loading direction and periodic boundary conditions, and the “*DATABASE_RVE” keyword is used to 
homogenize the loaded RVE and output the results to a database file automatically. The whole process including 
RVE reconstruction, meshing, and FE analyses is currently streamlined across different software and programs. 
DMN models are trained by gradient-based optimization methods (Stage-3) accompanied by transferring the 
knowledge of pre-trained models to train new RVEs. In addition to accelerating the training process, this so-called 
“transfer learning” process also guarantees that all trained models of different RVEs share an identical base 
structure (i.e., the same network topology). In practice, injection molded products contain thousands or even 
millions of microstructures with different fiber orientations. Obviously, it is not feasible to train an individual 
model for each microstructure. Therefore, it is necessary to find an effective way to reduce the sampling space 
(Köbler et al., 2018). To achieve this goal, we propose to utilize transfer learning to generate DMNs for RVEs 
with intermediate geometry descriptors by simply interpolating only a few pre-trained RVEs, which will be 
discussed with more details in Section 3.  
Finding the right phase properties has always been challenging. Experimental tests can be time-consuming and 
expensive, while some properties (e.g., the interfacial strength) are extremely difficult to measure directly within 
the material. Our strategy of multiscale material characterization relies on the fact that the material model for a 
single-phase material is usually available or easy to calibrate. For instance, most material parameters of the pure 
epoxy matrix and the fiber material, including the elastic constants and the hardening curves, can be measured 
from experimental tests, and the rest of the parameters can be characterized inversely using available composite 
coupon test data.  
In the last stage (Stage-4), we perform the online concurrent multiscale structural analysis driven by the intelligent 
material models. Although the fitting parameters of the DMN model are optimized via linear elastic data, the 
essential RVE topology information has been encoded and is still valid in the nonlinear region. The extrapolation 
capability of DMN makes the proposed data-driven simulation framework non-intrusive in terms of new material 
behaviors and loading paths that were not considered during the offline training. Since the total number of degrees 
of freedom in the DMN model is much less than a full-field FEA model associated with the RVE, the computation 
burden of the concurrent multiscale simulation is much reduced so that solving large-scale practical engineering 
problems can be achieved. Detailed discussion on the computational performance and cost of multiscale structural 
simulations will be provided in Section 4.  

 

3. Deep material networks for short fiber reinforced composites 
 
The DMN training and transfer learning procedures are demonstrated for the short fiber reinforced composite in 
this section. The same methodology can be also applied to other material systems with manufacturing process-
induced morphological variations, such as the nanoparticle reinforced polymer composite and polycrystal 
materials made by additive manufacturing or metal forming. For demonstration purpose, constant fiber length 
and diameter are assumed to simplify the sampling space. The RVE geometry, therefore, only depends on the 
fiber orientation and the fiber volume faction. In addition, the fiber and matrix phases are assumed to be perfectly 
bonded in the present study, but it is noteworthy to mention that DMN is capable of modeling interfacial behavior 
through network enrichment (Liu, 2020). 
In the online predictions, the orthotropic elastic constants of carbon fibers are assigned to the fiber phase, while 
the matrix phase is assumed to be an elasto-plastic epoxy material with isotropic hardening. Damage or softening 
effects are not included in this work, so that the RVE problem is well-posed without the loss of ellipticity. In our 
future work, non-local or viscous regularization techniques will be introduced for damage and failure analysis. 
To minimize the cost of data generation and model training, only 4 RVEs at the vertices of the design space are 
generated, as shown in Fig. 2A. The first three RVEs all have fiber volume fraction 𝑣𝑣𝑣𝑣 = 10%. The principal 
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terms of their fiber orientation tensors [𝑎𝑎11,𝑎𝑎22,𝑎𝑎33] are [1/3, 1/3, 1/3], [1/2, 1/2, 0], and [1, 0, 0], which 
correspond to the 3D random, 2D random, and aligned microstructures, respectively. The fourth RVE is sampled 
at a higher fiber volume fraction 𝑣𝑣𝑣𝑣 = 30% with aligned unidirectional fibers. Note that the RVE reconstruction 
and mesh generation processes are not trivial. For example, the fiber packing algorithm may encounter difficulties 
at high volume fractions, especially for the 3D random and 2D random models. 

 
Fig. 2. Deep material works for short fiber reinforced composites. A. RVE geometries in FE analyses. B. Tree-maps of 
trained DMNs through transfer learning. The volume fraction inferred from the activations 𝒛𝒛 is listed on top of each plot. 

 
For each RVE, we generate 400 training data points and 100 test data points using the full-field FE analysis. 
Specifically, the test data are added to check the overfitting issue and assess the generalization performance of a 
trained model. The function to fit in the offline stage is 

 𝐂𝐂�𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐟𝐟�𝒛𝒛,𝜶𝜶,𝜷𝜷,𝜸𝜸;  𝐂𝐂fiber,𝐂𝐂matrix�, 

where the 𝐂𝐂fiber and 𝐂𝐂matrix are the input elastic stiffness tensors, and 𝐂𝐂�𝑟𝑟𝑟𝑟𝑟𝑟 is the output stiffness tensor. The 
fitting parameters of DMN are {𝒛𝒛,𝜶𝜶,𝜷𝜷,𝜸𝜸}, in which the activations 𝒛𝒛 define the weight of each DOF in the 
network, and 𝜶𝜶,𝜷𝜷,𝜸𝜸 denote the rotation angles at each building block.  
Since the fitting parameters are related to the RVE geometry, one can extract useful topological information after 
training with the mechanical data �𝐂𝐂fiber,𝐂𝐂matrix;  𝐂𝐂�𝑟𝑟𝑟𝑟𝑟𝑟�. In Fig. 2B, we plot the tree-maps and estimate the 
volume fractions of the fiber phase based on the trained activations 𝒛𝒛. The volume fraction inferred from the 
fitting parameters is very close to the DMN one, even though this information is hidden in the training data. 
Moreover, we have tried to reproduce the fiber orientation tensor from {𝒛𝒛,𝜶𝜶,𝜷𝜷,𝜸𝜸}, and good matches are also 
observed. 
A transfer learning approach is applied here to minimize the training effort for various short fiber reinforced 
RVEs. We start from the 3D random RVE with 10% fibers and train it with randomly initialized fitting parameters. 
The trained model is transferred to initialize the networks for 2D random and aligned RVEs with 10% fibers. 
Afterwards, the trained aligned model is transferred to the one with a higher fiber volume fraction at 30%. As 
pointed out earlier, construction of 3D or 2D random RVE geometries with 30% fibers is quite challenging, and 
difficulties in generating high-quality meshes are often encountered. In this regard, the database interpolation 
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scheme introduced later in this section circumvents these issues and offers a feasible way to generate models for 
these complex microstructures. All the four RVEs are trained for 10000 epochs. Here, one epoch refers to one 
round of evaluation on every training data point, which are divided randomly into 20 mini-batches for stochastic 
gradient decent in the present study. 

 
Fig. 3. Training history and results for four RVEs on the vertices of the sampling space. [𝑎𝑎11,𝑎𝑎22,𝑎𝑎33] are the principal 
terms of the fiber orientation tensor. The arrows illustrate the transfer learning path, and RVE-0 is trained with random 
initialization. The histories of training errors and test errors are denoted by solid lines and dashed lines, respectively. 

 
We set the number of layers in DMN to 8, so that each DMN originally contains 128 DOFs. Since node 
deactivation and model compression (Liu et al., 2019a; Liu and Wu, 2019) are enabled, the final number of DOFs 
is reduced to 33 per DMN after training, with 7 for the fiber phase and 26 for the matrix phase, which can 
significantly save computational storage and enhance efficiency for the online prediction. Note that these numbers 
can be counted from the tree-map plots in Fig. 2B. 
The training results and histories are summarized in Fig. 3, where the accuracy is measured by the scaled mean 
absolute error. As we can see from the table, all the 10% RVEs reach a training error less than 1.8%, whereas the 
responses of the 30% RVE appear more difficult to be captured under similar network complexity. The histories 
of the average training and testing errors are presented in the curves of Fig. 3. The first RVE (i.e., RVE-0) begins 
with a large training error since the fitting parameters are randomly initialized without any pre-knowledge about 
the microstructure. For the other three RVEs, the trainings start from much lower errors around 10% because of 
the knowledge obtained from the pre-trained network via transfer learning. 
Another important observation from Fig. 3 is that the test error on unseen data points is almost the same as the 
training error, indicating that there is no overfitting issue. This nice feature of DMN is attributed to the essential 
physics embedded in the two-layer building block, which also enables its extrapolation capability to unknown 
materials and loading spaces. 
Since the base tree structures of all the DMNs obtained from transfer learning are analogous, a continuous 
migration between different database can be realized through direct interpolation of the fitting parameters. For a 
new intermediate data point (𝐗𝐗∗,𝐘𝐘∗), where the superscript (*) denotes the intermediate state, the regression 
function can be written as 

 𝐘𝐘∗(𝐗𝐗∗) = 𝐫𝐫�𝐗𝐗∗| (𝐗𝐗1,𝐘𝐘1), (𝐗𝐗2,𝐘𝐘2), … , (𝐗𝐗𝑁𝑁,𝐘𝐘𝑁𝑁)�, 

where the dependent variables 𝐘𝐘𝑖𝑖 are the DMN fitting parameters, and the independent variables 𝐗𝐗𝑖𝑖 are the 
geometric descriptors of the short fiber reinforced composite: 

𝐘𝐘𝑖𝑖 = [𝒛𝒛,𝜶𝜶,𝜷𝜷,𝜸𝜸]𝑖𝑖  ,   𝐗𝐗𝑖𝑖 = [𝑣𝑣𝑣𝑣,𝑎𝑎11,𝑎𝑎22]𝑖𝑖 .  
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To determine the unknown parameters for a linear regression model with three independent geometric descriptors 
(i.e.,  [𝑣𝑣𝑣𝑣,𝑎𝑎11,𝑎𝑎22]∗), we need four linearly independent data pairs (𝐗𝐗𝑖𝑖,𝐘𝐘𝑖𝑖), which correspond to four trained 
RVEs (i.e., 𝑁𝑁 = 4 in the above equation). It is noteworthy that it is possible to extrapolate the database to high 
volume fraction region outside of the sampling space (e.g., 𝑣𝑣𝑣𝑣 = 50%) (Liu et al., 2019b), but constructing a 
reference full-field DNS model with densely packed fibers is challenging due to both reconstruction and meshing 
difficulties. Therefore, we limit the fiber volume fraction in the range from 10% to 30% for the present study. 

After offline training with elastic data and transfer learning, we use the unified DMN database to predict 
nonlinear material behaviors. The fiber phase is considered to be orthotropic linear elastic with high strength in 
the fiber direction. The matrix phase is modeled as an elasto-plastic epoxy material with an exponential hardening 
law: 

 𝜎𝜎𝑌𝑌(𝜀𝜀𝑝𝑝) = −𝑎𝑎2 exp(−𝑎𝑎1𝜀𝜀𝑝𝑝) + 𝑎𝑎3, 

where 𝜎𝜎𝑌𝑌 denotes the yielding stress, and 𝜀𝜀𝑝𝑝 denotes the effective plastic strain. All the material constants of the 
fiber and matrix phases are listed in Tab. 1. It can be seen that the matrix starts to yield at 𝑎𝑎3 − 𝑎𝑎2 = 30 MPa, 
and it becomes close to perfectly plastic under relatively large plastic deformation. The fiber and matrix phases 
are assumed to be perfectly bonded.  
 

Tab. 1. Material parameters of the short fiber reinforced composites in the online prediction stage. 

 
 

The loading path in each direction is randomly generated. To obtain plastic-dominant responses, we constrain the 
stress 𝜎𝜎33 to vanish. This way the influence of hydrostatic loading, which is almost elastic, can be minimized. 
Note that this constraint is not prescribed in the concurrent simulations to appear in Section 4, where each 
microscale DMN receives all 6 strain components from the macroscale model and returns 6 components of the 
homogenized stress. 
Fig. 4 presents the comparison between stress-strain curves from DMN and DNS. Two RVE geometries and two 
loading paths are considered. The first RVE (in the left column) has a 3D random structure with 10% fiber volume 
fraction, which has been trained explicitly in the offline stage. The DMN model for the second RVE is obtained 
from the database interpolation without training. As we can see from the plots, the DMN models predict the 
nonlinear material response very well. Other than insufficient DMN layers, the slight mismatch may result from 
the element locking issue in the DNS model under plastic deformations, as the adopted standard linear tetrahedron 
finite elements can give over-stiff response when the material is nearly incompressible. On the other hand, the 
DMN models do not suffer from locking issues as element discretization is avoided. The accuracy of offline 
training can be further improved by adopting hexahedral/high-order tetrahedral elements with reduced 
integration/pressure projection or other techniques to alleviate locking. Nevertheless, the whole data-driven 
framework based on DMN should still apply. 
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Fig. 4. Stress-strain curves predicted by DMN and DNS for two RVE geometries (left-right) under two randomly generated 
loading paths (top-down). The DMN model with aligned fibers and 𝑣𝑣𝑣𝑣 = 15% (right) is obtained by database interpolation 
without training. The stress in 33 direction is set to 0. The DMN results are denoted by the solid lines, and the DNS results 
are denoted by the circles. 
 
In the online prediction stage, DMN is much more efficient than DNS. A typical LS-DYNA FE model for RVE 
has around 360,000 linear tetrahedron elements, and it takes about 1100 seconds to complete a loading path shown 
in Fig. 4 (20 loading steps in an implicit quasi-static analysis) using 8 CPUs. In comparison, the DMN model 
only has 33 DOFs, and the analysis under the same loading path takes 3 seconds using 1 CPU on the same 
workstation. The significant reduction in computational cost enabled by DMN opens the possibility of performing 
concurrent multiscale simulation in a manageable time, and we expect the ratio of cost reduction will be even 
more significant after migrating the DMN functions from Python to Fortran environment. 

 

4. Multiscale concurrent simulation driven by DMN database 
 
The DMN database is implemented and linked to LS-DYNA for concurrent multiscale structural simulations. 
While the microscale DMN model is always implicit, the macroscale model can be either explicit or implicit, 
since both stress and tangent stiffness tensor are given by the top node of DMN. To demonstrate this new structural 
analysis capability, we will focus on multiscale explicit dynamic FEA examples. 
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Fig. 5. Schematic of the DMN-based concurrent multiscale structural analysis. Each integration point in the macroscale 
composite structure is linked to a microscale DMN model. The macroscale material responses (e.g., stress) are extracted 
from the top node of DMN, while the internal variables locate at the nodes in the bottom layer. 

 
As depicted in Fig. 5, DMN is applied at each time step during the structural simulation, which involves forward 
homogenization/rotation and backward de-homogenization/rotation of material information at integration points 
of finite elements, yielding path-dependent material constitutive response for the overall composite materials, and 
accordingly, material state variables associated with the bottom layer nodes of the network are dynamically 
updated and stored. As such, the complex nonlinear material response and structural deformation process are 
well-captured simultaneously. 

 
Fig. 6. Random distribution of microscale geometric descriptors in the S-rail finite element model. A. Fiber volume fraction 
𝑣𝑣𝑣𝑣.  B. The 𝑎𝑎11 component in the fiber orientation tensor. 

 
To demonstrate this new structural analysis capability, multiscale explicit dynamic FEA examples are presented 
as follows. Firstly, we model an S-rail structure shown in Fig. 6. Initial velocities along x-direction are prescribed 
at cross sections of both ends, leading to large deformations and localized plastic strains. The channel is made of 
short fiber reinforced plastics, for which the actual material microstructural information can be obtained either 
from image data analysis, or from injection molding simulation packages (such as Moldex3D, MoldFlow, etc.). 
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Herein, for demonstration purpose, we neglect the actual material manufacturing process, and simply assume 
heterogenous material distribution by assigning random fiber volume fractions and orientations throughout the 
whole structure, as illustrated in Fig. 6.  
The channel is discretized with 2340 Belytschko-Tsai shell elements. Specifically, the type 25 shell is chosen to 
directly adopt fully 3D constitutive responses of DMN without ad-hoc modifications. Generalized plane stress 
conditions in DMN can also be imposed to yield constitutive response compatible with conventional thin shell 
elements (e.g., Type 2), but the results are not reported here. Efficient one-point quadrature scheme is adopted, 
where two through-thickness integration points are used per element, although more integration points can be 
chosen, as DMN does not add any restrictions on quadrature rules.  

 
Fig. 7. Results of the S-rail structure. A. von Mises stress (unit: GPa) distribution at the upper surface of shell elements 
during the S-rail deformation process (displacement scale factor: 𝛼𝛼𝑑𝑑 = 1.0). B. Evolution of averaged material state 
variables of bottom layer nodes of DMN at the upper surface of shell elements (displacement scale factor: 𝛼𝛼𝑑𝑑 = 0.0). 

 
Based on the local material microstructural information, a DMN database specific to every integration point is 
generated through transfer learning of the pre-trained networks and database interpolation as discussed in Section 
3. It is noteworthy to mention that, while simple linear elastic constitutive laws are adopted during the offline 
stage to learn the essential features and physics of composite materials, we employ an orthotropic elastic model 
for fibers and an isotropic hardening plasticity model for the epoxy at the online structural analysis stage to capture 
highly nonlinear material behaviors.  
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Fig. 7 shows the predicted large deformations of the S-rail at several time instances, and in Fig. 7A, the 
distributions of the von Mises stress are plotted. Fig. 7B shows the weighted effective plastic strain 𝜀𝜀𝑝𝑝 at the 
bottom layer of each DMN. Comparing with the von Mises stress distribution, we can clearly see that path-
dependent localized plastic deformations of the short fiber reinforced composite structures are effectively 
captured by the physics-embedded machine learning algorithm.  

 
Fig. 8. Results of the crush tubes. A. von Mises stress (unit: GPa) distribution at the upper surface of shell elements during 
tube crash processes (top row: fibers along the vertical Z-direction; bottom row: fibers in the horizontal X-Y plane, 
displacement scale factor: 𝛼𝛼𝑑𝑑 = 1.0). B. Force-displacement curves. 
 
Tab. 2. Computational times of the concurrent multiscale simulations. The microscale DMNs have 8 layers and 33 DOFs. 
All the computations are performed on a workstation with 20 Intel® Xeon® CPU E5-2640 v4 2.40 GHz processors. 

 
 
Next, we performed concurrent multiscale simulations of fiber-reinforced composite tubes under compressive 
crash loadings, which we refer to as “crush tube” later in the paper. Two crush tubes with uniform material 
distributions are considered. They have the same fiber volume fraction 𝑣𝑣𝑣𝑣 = 15.2% but different fiber 
orientations as shown in Fig. 8A. The tube is discretized with 641 Belytschko-Tsai shell elements, with designed 
imperfections to control the buckling mode. A rigid wall with an initial velocity presses the crush tube from the 
top through surface contact. The reaction force and displacement can be measured on the rigid wall in the 
simulation. 
As shown in the contour plots, the tube with short fibers along the vertical Z-direction yield higher stress 
distributions than the tube with fibers in the horizontal X-Y plane, which is expected as the simulation is under a 
vertical compressive motion control. This difference due to multiscale microstructural effect is also observed in 
the force-displacement curves given in Fig. 8B. The tube with fiber along the loading direction experiences a 
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higher post-buckling force. The results are promising as the microstructure-sensitive stress-strain responses are 
purely given by the DMN database; thus, no empirical material model is needed in the macroscale FE simulation. 
We are currently integrating the multiscale simulation framework with injection molding simulation results to 
take manufacturing effects into account for the structural failure analysis, and we will utilize experimental data 
to further calibrate and validate the developed multiscale modeling approach.  
The computational times for the concurrent simulations of the aforementioned examples are summarized in Tab. 
2. Since most computational resources are consumed by the DMN model evaluation at every macroscale element, 
the wall time scales well with the number of CPUs (𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶). We expect the wall time will scale closer to linearly 
for larger models. Let us make a naïve estimation based on the wall time of the S-rail model on 4 CPUs here: If 
a structure-level model has 1,000,000 finite elements and the same number of loading cycles, the simulation 
would take around 19.5 hours to finish using 96 CPUs. Meanwhile, code optimization and parallelization (e.g. 
GPU) are being performed to further accelerate the computation.  

 

5. Conclusion 
 
In this paper, we have shown that the concurrent multiscale simulations are perfectly approachable using 
computational homogenization and mechanistic machine learning for short-fiber reinforced composites. We 
consider the simulations to be “intelligent” for two reasons: 1) The material model for any microstructure induced 
by the manufacturing process can be extracted from the composite database; 2) The Deep Material Network 
(DMN) can capture nonlinear material behaviors under complex loading paths by learning the essential 
topological representation only from linear elastic data. 
Training processes of DMN show good convergence for various short fiber reinforced RVEs with different fiber 
orientations and volume fractions. To reduce the number of sampling points, we employed the transfer learning 
approach and generated DMNs for intermediate RVE geometries by simply interpolating a few pre-trained RVEs. 
Moreover, DMN shines in the case of extrapolation to nonlinear RVEs with elasto-plastic matrix under randomly 
generated loading paths. It is shown to achieve good accuracy against DNS results using much less degrees of 
freedom. This is especially important for efficient concurrent multiscale simulations as we demonstrated for two 
structural models with explicit dynamics. 
We believe this work will push machine learning and data-driven materials modeling to computer-aided 
engineering at an industrial scale. At the same time, we will integrate the multiscale simulation with process 
simulation software and validate the methods using experimental testing data.  Further enhancements of our 
models are also promising. For example, in (Liu, 2020), interfacial behaviors (e.g., debonding) between the fiber 
and matrix phases can be considered. Moreover, implicit macroscale analysis is ready to be implemented, which 
will be advantageous for multiscale simulation of longer-time events. 
It should be noted that the proposed data-driven framework based on DMN is quite general. It can be applied to 
different material systems in addition to the short fiber reinforced composite, such as the nanoparticle reinforced 
rubber composite, polycrystalline materials, and different types of carbon fiber reinforced composites (Liu and 
Wu, 2019). In terms of the manufacturing processes, high-throughput microstructure prediction and 
characterization are undergoing intensive research (Kaufmann et al., 2020), and we are currently working along 
this direction. 
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