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Abstract 
In this paper, we will introduce a new capability of multiphase flow simulations in the LS-DYNA CESE compressible solvers. It is a 
hybrid multiphase flow model proposed by L. Michael [1]. This model is targeted for high-speed explosions, especially shock-to-
detonation transition in liquid nitromethane. While the space-time conservation element and solution element (CESE) method, 
originally proposed by Chang [2], is designed for solving compressible flows, it is especially good for high-speed flows with 
complicated flow patterns. So we will use the CESE method to solve this hybrid multiphase flow model, and this approach will avoid 
a lot of complicated and time consuming treatments such as Riemann solvers and the Strang-splitting that are used in Ref.[1]. Our 
numerical examples show that we can get similar results using the CESE method. In the next sections, we will first give a brief 
introduction to the hybrid multiphase model, then the CESE method. Finally, we will give some numerical examples. 

 

Hybrid multiphase model 
Multiphase and multicomponent flows are very common in many engineering applications such as fuel sprays 
in combustion processes, ammonium-nitrate-based explosion in mining, and liquid-jet machining of materials. 
In past decades, many different multi-phase flow models have been proposed, and each one has its merits and 
limitations. A hybrid multiphase flow model proposed by L.Michael [1] is one of them. This multi-phase model 
is based on an augmented Euler approach to account for the mixture of the explosive and its products. It 
integrates the advantages of the augmented-Euler and Baer-Nunziato (BN)-type formulations while allowing for 
the interaction of an inert component with the reactant-product mixture, through a diffuse interface approach. 
Reduced versions of this formulation include modelling cases where the inert component is not present, when 
explicit modeling of the products of reaction is not required, or even when the phases are all non-reacting and 
could form free-surfaces. The main usage of this model is the numerical simulation of combustion and 
transition to detonation of condensed-phase commercial and military grade explosives, such as the propagation 
of detonations in compliantly-confined charges and the sensitization of commercial explosives by means of 
collapsing micro-balloons and shock-induced cavity collapse in liquid explosives.  
The full conservation form system of equations for this model can be written as: 

                                                                                                                  (1) 

With 

                 ,                  ,                ,     
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If two-dimensional axisymmetric cases are considered, an additional geometric source term should be included 
in S. Also, in the source term, K is a function giving the rate of conversion of reactants to products. Depending 
on the reaction rate law form used, term K usually depends on the temperature or pressure of the mixture, as 
well as the total density, the density of material 2 and λ.  and  are volume fractions of material 1 and  2 with 
respect to the volume of the total mixture with density ρ respectively, and we have ;  For example, if 
we consider a gas-filled cavity embedded in a liquid explosive, collapsing due to its interaction with an incident 
shock wave, the gas can be treated as material 1 with density, velocity and pressure given by , and the 
heterogeneous reactant-product mixture as material 2, with properties . The two components are 
separated by a material interface, and physical mixing between the two is not observed. Mechanical equilibrium 
(velocity and pressure) is assumed between the two materials, while thermal equilibrium (temperature) is 
assumed only between the components representing the reactants and products, i.e., the components that are 
allowed to physically mix. 
Material 2 is composed of two components; the explosive reactants (material α), with properties   and 
the explosive products (material β), with properties  . The mass fraction of material α with respect to 
the explosive mixture with density  is denoted by λ. As a result, the mass fraction of material β with respect to 
the explosive mixture is given by 1- λ.  Velocity and pressure equilibrium between the two constituents of the 
heterogeneous mixture is assumed, such that  and . Effectively, all three materials in the 
system (i.e. material 1, α, and β) are in velocity and pressure equilibrium. Temperature equilibrium is only 
assumed between the constituents of the explosive mixture, i.e. . 

This multiphase flow model is focused on high-speed explosion and it exactly matches the CESE method’s key 
capabilities, so this multiphase flow model will be solved using the CESE method under our dual CESE 
framework. 

CESE Method 
The simulation of multiphase flows poses far greater challenges than that of single-phase and single-component 
flows. These challenges are due to interfaces between phases and large or discontinuous property variations 
across interfaces between phases and/or components.  In ref.[1], a conventional Godunov (MUSCL-Hancock) 
scheme is used, plus a Strang-splitting to account for multiple dimensions.   A hierarchical adaptive mesh 
refinement (AMR) is also used to increase the resolution of shocks and material interfaces. Furthermore, an 
energy correction step is adopted in order to suppress the numerical oscillations near the smeared material 
interfaces. It is not only complicated, but also time-consuming. 
The space-time conservation element and solution element (CESE) method proposed by Chang [2] is especially 
designed for high speed compressible flows. It has several nontraditional features such as (i) a unified treatment 
of space and time, thereby ensuring good conservation in both space and time; (ii) simple but efficient 
discontinuity (shock) treatments. It is particularly useful for complex flows with shock waves and/or 
detonations.  Here we use the CESE method to solve the aforementioned hybrid multiphase flow model under 
our dual mesh CESE framework. 
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In order to use the CESE method, Eq. (1) is rewritten as: 

                                                                                                                   (2) 

Where  and   . Here the time coordinate is treated as the fourth dimension in three 
dimensional cases. Applying Gauss’s divergence theorem in the space-time domain, Eq. (2) is the differential 
form of the integral conservation law 

                                                                                                    (3) 

Where  is the boundary of an arbitrary closed space-time region V and  in which  and n are the 
length (area or volume) and unit outward normal vector of a microelement on  respectively. 
Now the fluid domain will be divided into nonoverlapping elements (mesh). In the CESE method, there is no 
limitation to the element shape; for example, Fig. 1(a) shows a two-dimensional spatial mesh (triangles and 
quadrilaterals mixed). In our new dual CESE framework, the flow variables are solved and stored on two 
different sets of nodes (denoted as solution point (SP)) in two successive time steps. One set is associated with 
the element centers (Ci is Fig.1(a)), the other set is associated with the element vertices (Ai in Fig.1(a)) (but not 
necessarily coincident with it).  
There are two important concepts in the CESE method, i.e., conservation element (CE) and solution element 
(SE), that is where the CESE name comes from. Associated with each solution point, there is a CE and a SE. 
Different definition of the CE and SE will make the CESE method a little different. Fig.1(b) shows the CE and 
SE definitions in our dual mesh CESE method for a two-dimensional hybrid mesh. If at t=tn, the element center 
solution point value are updated, then the CE associated with element center C0 is defined as the quadrangular 
cylinder A’0A’1A’4A’5A0A1A4A5, while the SE is defined as the quadrangular cylinder 
A0A1A4A5A”0A”1A”4A”5. Similarly, the CE associated with vertex A0 at t=tn-1 will be the polygonal cylinder 
C”0m”1C”1m”2C”2m”3C”3m”4C’0m’1C’1m’2C’2m’3C’3m’4, while the SE is defined as the polygonal cylinder 
C’0m’1C’1m’2C’2m’3C’3m’4C0m1C1m2C2m3C3m4 (see Fig.1(b)). 
Inside each SE, the flow variables are approximated by a first-order Taylor expression, e.g. in two dimensional 
cases, 

                          (4) 

Where  ,  ,  and (x0, y0, tn) are the coordinates of solution point C0 in space-time. 
Since the time derivative Ut can be calculated by Eq. (1), there are only three set of unknown variables that need 
to be approximated, i.e., U, Ux and Uy.  
In each CE, the conservation law Eq. (3) is enforced to obtain the main flow variables U. For the other two set 
of spatial derivatives, there are different ways to get it. For example, the conservation law Eq. (3) can be applied 
in the sub-conservation elements (sub-CE), e.g., the sub-CE of quadrangular cylinder m’1A’0m’4C’0m1A0m4C0, 
to get some additional discrete equations to solve other two sets of unknows. Another way is to use flow 
variable information at neighboring points, plus some derivatives calculation strategies. Of course, when there 
is a discontinuity or shock in the flow field, limiters of some kind (such as some weighting strategies) are also 
needed to suppress the overshoot and/or undershoot. Here in our CESE solver, we developed a very simple but 
efficient method for calculating derivatives for shock capturing. 
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(a)                                                                                   (b) 

 Fig. 1 (a) Schematic 2D spatial mesh grids and (b) definitions of CE and SE in space & time under dual CESE 
framework 

Numerical examples 
1. Planar shock interaction with cylindrical gas bubbles 
In this example, we use one of the reduce cases of the aforementioned hybrid model, i.e., two immiscible 
materials multiphase model, to test a planar shock wave interaction with an isolated bubble. Initially, a 
relatively weak shock in air with shock Mach number equal to 1.22 impacts a cylindrical bubble filled with 
refrigerant. Details about this problem’s setup and the experimental results can be seen in Ref. [3]. The shock is 
initially located in front of the bubble at x=0.05 and moving from left to right. Fig. 2 shows four snapshots 
before and after the shock impacts the bubble. These results agree well with the results of Ref. [3], where they 
use a Godunov method (so some kind of Reimann solver is needed) and an energy correction technique is also 
needed to suppress the numerical errors near the interface.  They also use adaptive mesh refinement (AMR) to 
increase the shock resolution.  But here we only use the CESE method with a uniform mesh (with far fewer 
mesh elements) to get similar results.  
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Fig.2 Planar shock interaction with a helium-filled bubble at four different time (density contours) 
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2. Detonation propagation in a JWL rate stick with confinement 
This is the example in Ref. [1], where a slab of explosive in a stick form is confined by an inert material, as 
illustrated in Fig. 3 (a). The explosive (LX-17) is initiated by a booster of the same material. The equation of 
state (JWL) and reaction rate law parameters are scaled with respect to appropriate reference quantities. This 
problem is cylindrically symmetric, with axis of symmetry the centerline of the rate stick, and only the bottom 
half of the domain is simulated. Fig. 3 (b) shows the numerical results of density at t=11 using the CESE 
method, it agrees well with the results in Ref. [1], but without adaptive mesh refinement, operator splitting and 
an energy correction approach. Also, no Riemann solver is needed when using the CESE solver.  

    
                                     ( a )                                                                            ( b ) 

Fig. 3 (a) Schematic of confined JWL rate-stick and (b) numerical results of density at time t=11 
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