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Abstract 

In the context of finite element analysis, the Newmark time integration scheme is the most commonly used for nonlinear implicit 
dynamic applications. While it is characterized by unconditional stability and energy conservation, it is also prone to numerical 
instability when the models are subjected to rotational motion. To this end, LS-DYNA® offers a selection of alternate integration 
schemes to remedy this deficiency; Bathe, HHT (Hughes-Hilber-Taylor) and FRD (Finite Rotational Dynamics). The intention with 
this paper is to tentatively discuss these instabilities and investigate to what extent they can be resolved by incorporating more 
sophisticated schemes.  

Introduction 
 
The primary example we have in mind is the design of a turbo fan aero engine. Most analyses relating to the 
rotors, vibration, stability and interaction with the static structure are analyzed using rotor dynamics models 
where the details of the rotors are reduced to center line models subject to gyroscopic and rubbing forces. The 
rotors are connected to models of the static structure of the engine and aeroplane via nonlinear springs. With the 
advent of supercomputers, detailed finite element models have been constructed to model issues associated with 
certification. An example is the detailed calculation of a blade off test of an engine. In this context, aircraft 
engines must demonstrate that they are capable of losing a fan blade at the highest energy and then running 
down safely without hazarding the aircraft. The engine must subsequently be capable of running freely for up to 
three hours. The test is both expensive and critical so usually before the test a detailed finite element model is 
produced and analyzed to give confidence that the test will be successful. The detailed model is run as an 
explicit analysis and should meet containment criteria and give confidence in the loads for the first few 
revolutions. Then, rotor dynamics models are constructed and correlated to the results of the test to calculate the 
rundown and windmilling loads to demonstrate that any loads produced on the aircraft or engine structure are 
within safe bounds. 
 
Over recent years the finite element matrix equation solution capability has grown with the ability to efficiently 
use thousands of processors, see for instance Ashcraft et.al. [1]. The question arises as to whether it is feasible 
to use the full detailed model with implicit time steps to calculate the rundown. Further over the horizon is the 
prospect of a virtual engine where more physics is added to the model. Crucial to any such analysis is the ability 
to integrate the equations of motion of a rotor over hundreds of revolutions both accurately and efficiently with 
ideally large time steps. In a recent study, Kober et.al. [2,3], demonstrate how instabilities arise in a rotating 
structure using the standard Newmark algorithm and propose ways to deal with it. This paper continues the 
discussion, and in particular addresses the careful assessment of integration schemes against the required 
analysis. The paper shows for certain models there are advantages in the FRD scheme which should be explored 
further.  
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Implicit Time Integration Schemes 

 
Implicit time integration schemes assume a set of velocities 𝒗𝒗𝑛𝑛 and accelerations 𝒂𝒂𝑛𝑛 at time step 𝑛𝑛, and given a 
geometry increment 𝛥𝛥𝒙𝒙 = 𝒙𝒙 − 𝒙𝒙𝑛𝑛 and time step 𝛥𝛥𝛥𝛥 gives expressions for how these are updated to 
corresponding quantities 𝒗𝒗 and 𝒂𝒂 at time step 𝑛𝑛 + 1.  
 
In general, each component of the acceleration, velocity and geometry vectors can be written on the form 
 

𝑿𝑿 = 𝑨𝑨𝑿𝑿𝑛𝑛, 𝑿𝑿 = �
𝑎𝑎
𝑣𝑣
𝑥𝑥
� , 𝑿𝑿𝑛𝑛 = �

𝑎𝑎𝑛𝑛
𝑣𝑣𝑛𝑛
𝑥𝑥𝑛𝑛
� 

 
where 𝑨𝑨 is an integration matrix that depends on the time step and parameters related to the choice of method. 
The method is stable if the spectral radius 𝜌𝜌(𝑨𝑨), i.e., the maximum eigenvalue of 𝑨𝑨, is not greater than 1. This 
is a mathematical way to say that the solution of a closed system, with respect to a norm of sufficient strength, 
stays bounded. The scheme is said to be unconditionally stable if the criterion only depends on the numerical 
parameters and not the time step, a typical characteristic of implicit time integration schemes. 
 
A complementary criterion is that the scheme converges, meaning that the numerical solution can be put 
arbitrarily close to the analytical solution by selecting a sufficiently small time step. With this being said, the 
main interest is not if the scheme converges but rather at which rate it does so. Numerical dissipation and 
dispersion affecting the main frequency content of the analytical solution tend to slow down convergence and 
should thus be avoided. A good scheme typically shifts these sources of errors towards higher frequencies, 
something that may even have a stabilizing effect for nonlinear problems. 
 
This section presents the schemes available in LS-DYNA and some of their characteristics, without elaborating 
on details. For readers inclined to mathematical analyses of the methods we refer to references mentioned 
below. The integration scheme parameters are collected in the keyword  
 
*CONTROL_IMPLICIT_DYNAMICS 
IMASS GAMMA BETA     ALPHA 
 
where only the parameters of interest are included here. For a detailed description we refer to the LS-DYNA 
Keyword User’s Manual [4]. 

Newmark 
The family of Newmark time integration schemes, sometimes referred to as the 𝛽𝛽-method of Newmark, is by far 
the most commonly used in structural mechanics and dates back to the works of Nathan Newmark [5]. 
Mathematically the scheme is given as 
 

𝒂𝒂 = 𝒂𝒂𝑛𝑛 +
𝛥𝛥𝒙𝒙
𝛽𝛽𝛥𝛥𝛥𝛥2

−
𝒗𝒗𝑛𝑛
𝛽𝛽𝛥𝛥𝛥𝛥

−
1

2𝛽𝛽
𝒂𝒂𝑛𝑛 

𝒗𝒗 = 𝒗𝒗𝑛𝑛 + Δ𝛥𝛥(1 − 𝛾𝛾)𝒂𝒂𝑛𝑛 + 𝛾𝛾Δ𝛥𝛥𝒂𝒂 
 
where 𝛾𝛾 and 𝛽𝛽 are independent parameters and 𝛥𝛥𝒙𝒙 is the geometry change between the two time steps. This 
method is activated in LS-DYNA by IMASS=1, ALPHA=0, GAMMA=𝛾𝛾 and BETA=𝛽𝛽 , i.e., the latter two 
selected as desired. For linear analysis the method is unconditionally stable when 
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γ ≥
1
2

 

𝛽𝛽 ≥
1
4
�

1
2

+ 𝛾𝛾�
2

, 
 
which in practice can be seen as true also for nonlinear analysis. For an isolated system in linear analysis, the 
numerical dissipation 𝑑𝑑 can be calculated as 
 

𝑑𝑑 =
1
2

(𝒗𝒗𝑛𝑛𝑇𝑇𝑴𝑴𝒗𝒗𝑛𝑛 + 𝒖𝒖𝑛𝑛𝑇𝑇𝑲𝑲𝒖𝒖𝑛𝑛 − 𝒗𝒗𝑇𝑇𝑴𝑴𝒗𝒗 − 𝒖𝒖𝑇𝑇𝑲𝑲𝒖𝒖) = Δ𝛥𝛥2 �𝛽𝛽 −
𝛾𝛾
2
� (𝒂𝒂𝑛𝑛 + 𝛾𝛾∆𝒂𝒂)𝑇𝑇𝑴𝑴∆𝒂𝒂 + �𝛾𝛾 −

1
2
� ∆𝒙𝒙𝑇𝑇𝑲𝑲∆𝒙𝒙 

 
which shows that equality in the stability condition preserves energy. For strict inequality the dissipation is 
positive, and the argument against dissipative Newmark schemes is that a great amount of the dissipation occurs 
for low frequencies and thus deteriorates results. This was put forward by Hans Hilber, Thomas Hughes and 
Robert Taylor in 1977 [6] in their quest for an improved formulation. 

Hilber-Hughes-Taylor (HHT) 
The presentation of the HHT time integration scheme in [6] can be generalized to nonlinear implicit by 
modifying the expression for velocity and geometry in the equations of motion as 

𝒗𝒗𝛼𝛼 = −𝛼𝛼𝒗𝒗𝑛𝑛 + (1 + 𝛼𝛼)𝒗𝒗 
𝒙𝒙𝛼𝛼 = −𝛼𝛼𝒙𝒙𝑛𝑛 + (1 + 𝛼𝛼)𝒙𝒙. 

Here 𝒗𝒗 is the velocity from the Newmark scheme, and 𝒙𝒙 = 𝒙𝒙𝑛𝑛 + ∆𝒙𝒙 is the geometry at time step 𝑛𝑛 + 1, and the 
resulting scheme is known as the HHT or 𝛼𝛼-method. The method is stable for 
 

− 1 3⁄ ≤ 𝛼𝛼 ≤ 0, 
 
and from [6] it seems that a value of 𝛼𝛼 = −0.05 provides a reasonable amount of numerical dissipation. It is 
also shown that this new method nicely damps out high frequencies while low frequencies are left unaffected, in 
contrast to the Newmark method. This method is activated in LS-DYNA by IMASS=1, ALPHA=𝛼𝛼 ∈ ]−1,0[, 
GAMMA=𝛾𝛾 and BETA=𝛽𝛽 , i.e., 𝛼𝛼 must be a negative fraction. 

Bathe 
An attempt to improve Newmark without the outset of introducing numerical dissipation was presented by 
Klaus-Jürgen Bathe [7], which amounts to using a backward Euler scheme every other step as a correction of 
the Newmark step. The equations for the latter is summarized as 

𝒂𝒂 =
(1 + 𝛼𝛼)
∆𝛥𝛥

(𝒗𝒗 − 𝒗𝒗𝑛𝑛) −
𝛼𝛼
∆𝛥𝛥𝑛𝑛

(𝒗𝒗𝑛𝑛 − 𝒗𝒗𝑛𝑛−1) 

𝒗𝒗 =
(1 + 𝛼𝛼)
∆𝛥𝛥

𝛥𝛥𝒙𝒙 −
𝛼𝛼
∆𝛥𝛥𝑛𝑛

𝛥𝛥𝒙𝒙𝑛𝑛, 

where ∆𝒙𝒙𝑛𝑛 and ∆𝛥𝛥𝑛𝑛 to denote the geometry and time increment from the previous Newmark step. The parameter 
𝛼𝛼 is introduced to provide a family of Bathe schemes, while the specific choice of 𝛼𝛼 = 1/2 gives the Bathe 
scheme as originally presented. This method appears promising in the context of rotating structures since it is a 
three-point method, and thus has the potential of more appropriately representing curvilinear motion. This 
method is activated in LS-DYNA by IMASS=1, ALPHA=𝛼𝛼 ∈ ]0,1[, GAMMA=𝛾𝛾 and BETA=𝛽𝛽 , i.e., 𝛼𝛼 must be a 
positive fraction. A mathematical analysis of the method is provided in [8]. 
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Finite Rotational Dynamics (FRD) 
The intention with FRD integration is to treat global finite rotations with no loss of accuracy and impose 
damping on superposed deformations (vibrations) with assumed high frequencies, and this section provides a 
rough outline of the theory, see Figure 1. 
 
We can estimate the rigid body rotational increment, ∆𝜽𝜽0, at the center of mass, 𝒙𝒙0, by a least square problem 
that reads1 
 

∆𝒙𝒙𝑖𝑖 = ∆𝒙𝒙0 + ∆𝜽𝜽0 × 𝒓𝒓𝑖𝑖. 
 
Here 𝑖𝑖 ranges over all nodes in the finite element structure, 𝒓𝒓𝑖𝑖 = 𝒙𝒙𝑖𝑖 − 𝒙𝒙0 is the position vector of node 𝑖𝑖 relative 
to the center of mass, and ∆𝒙𝒙0 is obtained by direct calculation of the center of masses in current and previous 
configurations. Without loss of generality, and for the sake of simplifying the exposition, we can assume 
∆𝜽𝜽0𝑇𝑇𝒓𝒓𝑖𝑖 = 0. The rotation direction is taken as the axis of a cylindrical coordinate system,  
 

𝒆𝒆𝑧𝑧 =
∆𝜽𝜽0

|∆𝜽𝜽0|, 

 
while for each node the other axes are 
 

𝒆𝒆𝑟𝑟 =
𝒓𝒓𝑖𝑖

|𝒓𝒓𝑖𝑖|
 

𝒆𝒆𝜃𝜃 = 𝒆𝒆𝑧𝑧 × 𝒆𝒆𝑟𝑟 . 
 
Given ∆𝒙𝒙0 and ∆𝜽𝜽0, we can use the Newmark scheme to integrate the global translational velocity {𝒗𝒗0,𝝎𝝎0} and 
acceleration {𝒂𝒂0,𝜶𝜶0} of the global motion of the structure. On top of this, we define2  
 

∆𝑟𝑟𝑖𝑖 = 𝒆𝒆𝑟𝑟𝑇𝑇(∆𝒙𝒙𝑖𝑖 − ∆𝒙𝒙0) 

∆𝜑𝜑𝑖𝑖 =
1
𝑟𝑟𝑖𝑖
𝒆𝒆𝜃𝜃𝑇𝑇(∆𝒙𝒙𝑖𝑖 − ∆𝒙𝒙0) − 𝒆𝒆𝑧𝑧𝑇𝑇∆𝜽𝜽0 

∆𝑧𝑧𝑖𝑖 = 𝒆𝒆𝑧𝑧𝑇𝑇(∆𝒙𝒙𝑖𝑖 − ∆𝒙𝒙0) 
 

 
1 For finite rotation accuracy, the equation is slightly more involved, but this is irrelevant for understanding the basic concepts of the 
algorithm. 
2 See previous footnote 

𝒆𝒆𝑟𝑟 

𝒆𝒆𝜃𝜃 

𝒆𝒆𝑧𝑧 𝜔𝜔0 

𝒙𝒙0 𝒙𝒙𝑖𝑖 

∆𝜽𝜽0 

𝑟𝑟𝑖𝑖 

Figure 1 Finite Rotational Dynamics nomenclature, exemplified for a flat rotating disc 

𝒙𝒙 
𝒚𝒚 

𝒛𝒛 

𝒗𝒗0 
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which we can use to compute velocities {�̇�𝑟𝑖𝑖, �̇�𝜑𝑖𝑖, �̇�𝑧𝑖𝑖} and accelerations {�̈�𝑟𝑖𝑖, �̈�𝜑𝑖𝑖, �̈�𝑧𝑖𝑖} with respect to the (curved) 
cylindrical coordinate system, respectively. We can now transform all this to Cartesian coordinates to obtain 
 

𝒗𝒗 = 𝒗𝒗0 + �̇�𝑟𝑖𝑖𝒆𝒆𝑟𝑟 + 𝑟𝑟𝑖𝑖�̇�𝜃𝑖𝑖𝒆𝒆𝜃𝜃 + �̇�𝑧𝑖𝑖𝒆𝒆𝑧𝑧 
𝒂𝒂 = 𝒂𝒂0 + ��̈�𝑟𝑖𝑖 − 𝑟𝑟𝑖𝑖�̇�𝜃𝑖𝑖2�𝒆𝒆𝑟𝑟 + �2�̇�𝑟𝑖𝑖�̇�𝜃𝑖𝑖 + 𝑟𝑟𝑖𝑖�̈�𝜃𝑖𝑖�𝒆𝒆𝜃𝜃 + �̈�𝑧𝑖𝑖𝒆𝒆𝑧𝑧 , 

 
where �̇�𝜃𝑖𝑖 = �̇�𝜑𝑖𝑖 + 𝒆𝒆𝑧𝑧𝑇𝑇𝝎𝝎0 and �̈�𝜃𝑖𝑖 = �̈�𝜑𝑖𝑖 + 𝒆𝒆𝑧𝑧𝑇𝑇𝜶𝜶0. The attraction of this approach lies in perfect force treatment of a 
rigid body rotation of a deformable structure, which neither of the previously presented algorithms are capable 
of. It also opens for the possibility to impose damping on the radial (𝑟𝑟𝑖𝑖) and axial (𝑧𝑧𝑖𝑖) motions, respectively, as 
well as the overlayed angular motion (𝜑𝜑𝑖𝑖), which we assume contains the high frequencies. The limitation is of 
course that it is designed specifically for essentially rotating structures and will presumably not add any merit to 
more general deformation problems. 
 
This method is activated in LS-DYNA by IMASS=1, GAMMA=𝛾𝛾 and BETA=𝛽𝛽, while ALPHA is a negative 
integer. The negative integer specifies the number of independent rotating units in the model, and for each unit a 
part set is specified that collects all the elements that makes up this unit. As intimated above, using numerical 
damping to selectively damp higher frequencies leaving low frequencies relatively untouched can be 
implemented by choosing appropriate values of 𝛾𝛾 and 𝛽𝛽. The central idea though is that this will apply to all 
modes except for the global rotation {𝝎𝝎0,𝜶𝜶0} which will use the non-dissipative scheme. 
 
 

Examples 

 

Figure 2 Block subjected to a torque by way of segment load pairs 
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Rotating Disc 
The first example considered was presented in [2], where a torque given by 
 

𝑀𝑀(𝛥𝛥) = �+72 𝑁𝑁𝑁𝑁 0 𝑠𝑠 ≤ 𝛥𝛥 ≤ 0.05 𝑠𝑠
−72 𝑁𝑁𝑁𝑁 0.05 𝑠𝑠 < 𝛥𝛥 ≤ 0.1 𝑠𝑠 

 
is applied to a square disc with dimensions 𝑉𝑉 = 0.2 × 0.2 × 0.01 𝑁𝑁3 and density 𝜌𝜌 = 4429 𝑘𝑘𝑘𝑘/𝑁𝑁3. The disc 
should spin with constant rotational acceleration to attain a peak rotational velocity of about 304.8 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠 at 𝛥𝛥 =
0.05 𝑠𝑠, and then reverse the motion to end up at rest by 𝛥𝛥 = 0.1 𝑠𝑠. The behaviors of the four different methods 
are illustrated in Figure 3 from which some general conclusions can be drawn. The only two methods able to 
converge using a time step of 5 𝑁𝑁𝑠𝑠 (corresponding to an angular increment of almost 90 degrees at peak 
rotational velocity) are FRD and Bathe (using 𝛼𝛼 = 0.5, i.e., the original Bathe method), of which the latter 
suffers from significant numerical dissipation. While FRD also suffers from reduced accuracy it is not as 
prominent, which is expected by way of algorithm design. As far as the other two, HHT (using 𝛼𝛼 = −0.05, i.e., 
the recommended value) and Newmark (using the trapezoidal rule, energy conserving), both fail using a time 
step of 2.5 𝑁𝑁𝑠𝑠 while Newmark is also incapable of sustaining a time step of 1 𝑁𝑁𝑠𝑠. Presumably neither of these 
methods are designed for this degree of nonlinearity, but HHT performs somewhat better due to the slight 
numerical dissipation. Any of the methods would probably be more stable with more numerical dissipation, 
which is always possible, but obviously the results would become worse. 

 
As a complement, the torque was changed to 
 

𝑀𝑀(𝛥𝛥) = �+72 𝑁𝑁𝑁𝑁 0 𝑠𝑠 ≤ 𝛥𝛥 ≤ 0.05 𝑠𝑠
0 𝑁𝑁𝑁𝑁 0.05 𝑠𝑠 < 𝛥𝛥 ≤ 0.15 𝑠𝑠 

 
with results as shown in Figure 4. Similar conclusions can be drawn, with the additional remark that the zig-zag 
appearance of the Bathe curves comes from the fact that the scheme toggles between Newmark and Euler 
scheme each step. 

Figure 3 Rotational velocity for acceleration and deceleration of block 
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Rotating Engine 
A somewhat more interesting example is the rotating engine shown in Figure 5. We impose an initial rotational 
velocity of 480 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠, corresponding to approximately 180000 𝑟𝑟𝑟𝑟𝑁𝑁, on the rotating unit, while the bearing 
and cover are fixated. The structure is preloaded with the centripetal forces corresponding to this initial 
condition, and no external loads are acting on the system. By neglecting energy loss in form of damping and 
friction, the engine should keep rotating with constant velocity indefinitely, and this test shows how the 
different schemes perform in such a scenario. 
 
 
 
 

Figure 4 Rotational velocity for acceleration and maintaining velocity of block 

 

Figure 5 Rotating engine prior to blade out 
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For Newmark and HHT (𝛼𝛼 = −0.05) we made two simulations, each for the duration of 1 𝑠𝑠. One is using a 
time step corresponding to an angular increment of 5 degrees and another is targeting 10 degrees. Newmark 
was unsuccessful in both cases, error terminating quite early. HHT managed to complete the simulation for the 
first of these simulations, the 5 degree increment, while using 10 degrees also resulted in an early error 
termination. From curve A in Figure 6 it is evident that HHT damps in a frequency range where the global 
velocity is not affected significantly, but this slight damping is not enough to render a robust procedure for 
much larger angular increments. We didn’t explore the possibility to add more damping, but maybe this would 
be a fairly successful approach. 
 
We made the same simulations for the Bathe (𝛼𝛼 = 0.5) scheme, both terminating successfully. However, as 
seen from curves B and C in Figure 6 the damping is significant and the user needs to assess whether this is a 
tractable approach. The conclusion here is very much like the one for the rotating disc, the Bathe scheme seems 
to add more damping to the system than HHT for instance. 

 
For FRD we took a different approach, namely to push the angular increment towards 45 degrees in order to 
demonstrate its ability to represent the dynamics of rotating structures perfectly. To this end, three different 
simulations were performed, each with different amounts of numerical damping. We label these None (𝛾𝛾 =
0.5,𝛽𝛽 = 0.25), Slight (𝛾𝛾 = 0.55, 𝛽𝛽 = 0.27563) and High (𝛾𝛾 = 0.6, 𝛽𝛽 = 0.38) damping, and the results are 
shown in Figure 7.  

Figure 6 Rotational velocity of engine for HHT and Bathe, using different angle increments 

 Figure 7 Rotational velocity of engine for Finite Rotational Dynamics, using no, slight and high damping 
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It seems that the numerical damping, as intended, provides a stability that allows the highly damped simulation 
to complete with no reduction in rotational velocity. Important to note is that the angular increment is much 
higher than for the other simulations, which may explain why the less damped attempts failed. Another 
observation is that the velocity decreases for the first few time steps, which is correlating with the time step 
being incremented to reach the target angular increment. This reduction of velocity is not seen when the time 
step is kept constant and may be something that needs to be looked into. 
 
 

Summary and Discussion 
 
A brief study of the various implicit time integration schemes offered by LS-DYNA has been conducted, in 
particular when being applied to fast rotating systems. The aim is to efficiently solve these kinds of problems 
for long duration with sufficient accuracy, and to this end the following issues arise. 
 

1. What scheme should I use? 
2. What parameter settings should I use? 
3. What time step should I use? 
4. What convergence tolerances should I use? 

 
This paper does not provide a generic and definite answer to any of these, but maybe some ideas for users to 
start their own investigations. It has been concluded that Newmark does not seem an adequate choice, while 
HHT and Bathe works reasonably well but adds numerical dissipation that may or may not be acceptable. A 
new scheme, called FRD, is presented that is capable of preserving rotational speed while adding dissipation to 
superposed vibrations. We did not investigate the method enough to draw solid conclusions, but it feels 
promising and we intend to explore its potential. 
 
In this paper, we have been focusing on the quality of the schemes themselves, without too much concern about 
items 3 and 4 above. For this reason, all numerical examples have been solved with tight tolerances to do away 
with instabilities caused by numerical errors. Nonetheless, we realize that this is an important practical aspect 
and hope to delve into this as a continuation. We believe however that high accuracy schemes are less sensitive 
to numerical errors and can thus sustain larger angular increments and still maintain reasonable quality of 
results. Using large angular increments will however result in more implicit iterations per time step, so this 
needs also to be weighed in when targeting the time step size. A suggested starting point would be to aim at an 
angular increment of 5 to 10 degrees, and use default tolerance settings, and take it from there. Meanwhile we 
hope to improve the methods of interest by bettering the quality of algorithms and tangent stiffness matrices. 
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