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Abstract 
 
Two important limitations of the Smoothed Particle Hydrodynamics are low accuracy and tensile instability. While the former can be 
somewhat alleviated by employing very fine discretizations and renormalized formulations, the latter can only be slightly mitigated 
with heavy use of artificial viscosity. In addition, renormalized formulations can be unsuitable for extreme deformations and impact 
simulations, and excessive artificial viscosity can severely alter the physics of the problem being modeled. A new formulation based 
on a Moving Least-Squares approximation and an improved nodal integration scheme is presented in this paper. The method is shown 
to be much more stable in tension, and very accurate. Extensive comparisons with traditional SPH and with experimental data are 
presented. 

 
 

Introduction 
 
The Smoothed Particle Hydrodynamics (SPH) method [1,2] provides an interesting alternative to traditional 
finite element methods for numerical simulations involving impact, material fragmentation, or very large 
deformations. Common issues that arise when modeling this kind of events, such as mesh entanglement, 
element distortion or inversion are avoided by the meshfree nature of the method. However, SPH suffers from 
well-known tensile instability issues [3] that are difficult to resolve, poor convergence properties [4], and low 
accuracy.  
In this paper, we introduce the MLS-Based formulation recently implemented in the SPH module of LS-DYNA. 
The main equations of the traditional SPH formulation are presented first, followed by the theory and 
LS-DYNA implementation of the MLS-Based formulation. Some numerical examples and comparisons 
between formulations are provided next, along with comparisons with available experimental data. The new 
formulation is shown to have much better stability in tension, better overall accuracy, and better agreement with 
experiment in validation tests. 

 
Standard SPH Formulation 

 
The main theory and derivation of the SPH method has already been well documented, therefore only the main 
equations are recalled below. For a more in-depth review of the theoretical foundation, see for example [5]. The 
heart of the method relies on interpolation theory. Namely, for a function 𝑓𝑓 defined over a domain 𝛺𝛺, and for 
𝒙𝒙 ∈  𝛺𝛺, we define the interpolation ⟨𝑓𝑓⟩ as:  

 
where 𝑊𝑊 is a kernel function of support determined by the parameter ℎ. A common choice for 𝑊𝑊 is the cubic 
B-spline function, which is the default kernel available in LS-DYNA. After discretization, this interpolation 
evaluated at particle 𝐼𝐼 is approximated as 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where 𝒙𝒙𝐽𝐽, 𝑚𝑚𝐽𝐽  and 𝜌𝜌𝐽𝐽 are the position, mass and density associated with particle 𝐽𝐽, respectively. The discretized 
continuity and momentum conservation equations in SPH are generally expressed as  

 

and  

 

where 𝝈𝝈𝐼𝐼 is the stress tensor at particle 𝐼𝐼 in Voigt notation, 𝒗𝒗𝐼𝐼 is the velocity at particle 𝐼𝐼, and 𝜵𝜵𝑊𝑊𝐼𝐼𝐼𝐼  =
 𝜵𝜵𝑊𝑊 (|𝒙𝒙 − 𝒙𝒙𝐼𝐼|/ℎ)|𝒙𝒙→𝒙𝒙𝐼𝐼 is the gradient of the kernel function associated with particle 𝐽𝐽 evaluated at particle 𝐼𝐼. 

While simple to implement and extremely robust, the traditional SPH suffers from relatively poor accuracy. 
Though this can be somewhat alleviated by using kernel gradient correction techniques [6, 7] to improve 
completeness, Figure 1 illustrates how a simple wave propagation problem is still difficult to capture for this 
method. Some known stability issues [3] also require the use of artificial viscosity, which adds undesirable 
numerical dissipation. As illustrated in a numerical example in section 4, tensile instability causes particles to 
break apart prematurely, widely limiting the reliability of numerical results obtained with SPH methods for 
problems involving tension.  

 

Figure 1: Longitudinal wave propagating in a 1D bar modeled with SPH and renormalized SPH, compared to 
analytical solution. 
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Moving Least-Squares Based Formulation 

Method derivation 

The method is based on two techniques derived in the Reproducing Kernel Particle Method (RKPM)[8] 
framework. A quasi-linear least-squares construction is employed as approximation functions [9], replacing the 
SPH kernel functions. The continuity and momentum equations presented in the previous section are replaced 
by a stabilized and nodally integrated weak-form [10]. Only a brief summary of both methods is presented here, 
as a thorough derivation can be found in both papers.  

We now consider a two-dimensional case, though the results are directly applicable to 3-D and 1-D 
formulations. We first introduce the following notations. 𝑯𝑯 is a vector of monomials defined as  

 

and the corresponding moment matrix 𝑴𝑴(𝒙𝒙) is expressed as  

 

 

Figure 2: Example of sampling points {𝒙𝒙𝒌𝒌∗ (𝒙𝒙�)} in a two-dimensional domain. 

 

The traditional first order RKPM approximation function, based on a moving least-squares construction, is 
written as [11]   

 

To circumvent possible singularity of the moment matrix defined in (6) when particles spread apart, quasi-linear 
reproducing functions [9] are used instead. A coefficient 𝛼𝛼 >  0 is introduced. For any 𝒙𝒙�   ∈  𝛺𝛺, consider a set 
of sampling points {𝒙𝒙𝒌𝒌∗ (𝒙𝒙�)}𝑘𝑘=14

 not contained on a line, as illustrated in Figure 2. The quasi-linear approximation 
function is defined as  

 

 
with  
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and  

 

where 

 

The modified moment matrix defined in (10) can easily be shown as non-singular for any position of 
neighboring particles, greatly increasing the robustness of the approximation. A more thorough investigation of 
the approximation properties of the method can be found in [9].  

The continuity and momentum conservation equations in (3) and (4) are replaced by the following expressions:  

 

and  

 

where 𝝈𝝈𝐽𝐽 is the stress tensor at particle 𝐽𝐽 in Voigt notation, 𝑉𝑉𝐼𝐼 is the volume associated with particle 𝐼𝐼, and  

 

The stabilization term in (13) associated with particle 𝐼𝐼, 𝑓𝑓𝐼𝐼stab, is calculated as [10]  

 

with  
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where 𝑪𝑪𝐼𝐼 is the material consistent tangent at particle 𝐼𝐼. 𝑀𝑀𝐼𝐼𝐼𝐼 and 𝑀𝑀𝐼𝐼𝐼𝐼 are the second moments of area of a 
representative volume around particle 𝐼𝐼 in the 𝐼𝐼 and 𝐼𝐼 directions, respectively. For better CPU efficiency, the 
first order derivatives in (14) are approximated via a smoothed gradient operator [12]. The second order 
derivatives in (16) are approximated via an implicit gradient expansion [13, 10] operating on the first order 
derivatives obtained from the aforementioned smoothed gradient operation.  

 

Implementation in LS-DYNA 

This formulation was integrated in the SPH module of LS-DYNA as a new option in the *Control_SPH 
keyword, by setting FORM = 12.  

Still using a two-dimensional domain for illustration purposes, the sampling points introduced in section 3.1 are 
chosen as:  

 

with 𝜀𝜀 =  0.05, which seems to give good results for a variety of test problems. The parameter 𝛼𝛼 defined earlier 
has a default value of 𝛼𝛼 =  0.01 which also seems to be a good balance between stability and accuracy. This 
value can be modified using the QL parameter in *Control_SPH, for experimentation. Lower values will 
slightly improve accuracy, but may trigger instabilities in very large deformations regimes. Conversely, higher 
values will yield lower accuracy, but can provide greater stability in very large deformations problems.  

The default stabilization term in (15) is based on the current stress gradients. This term can optionally be 
calculated based on the accumulated stress gradients by setting ISTAB = 1 in *Control_SPH. This is only 
recommended for hyperelastic materials or elasto-plastic materials with hardening, and should not be used for 
materials with softening or damage.  

 

Numerical Examples 

Tensile Test 

One of the main limitations of the SPH method is the tensile instability mentioned in section 2. To illustrate the 
problem, consider an elasto-plastic bar under tension as shown in Figure 3a. Both traditional and renormalized 
SPH formulations result in very early splitting of the bar (Figure 3b, Figure 3c) instead of developing tensile 
stresses and deformations. The MLS-based formulation however is much less sensitive to this instability, as 
shown in Figure 3d.  
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(a) Initial geometry. 

 

 

(b) Traditional SPH (FORM = 0). Tensile instability results in 
the bar splitting prematurely. 

 

(c) Renormalized SPH (FORM = 1). The SPH part can handle 
some tension before splitting, but still yields unphysical 

behavior. 

 

(d) MLS-based SPH (FORM = 12). The material is able to 
withstand consequent tensile deformations. 

Figure 3: Tensile test problem: The left grip is fixed, while the right grip has a prescribed constant velocity. 

 

Wave Propagation  

 

Figure 4: Wave propagation problem, boundary and initial conditions. 

In this example, we model an elastic rod of length 𝐿𝐿 =  20 cm and of cross-section 1 cm ×  1 cm with a free 
boundary condition at 𝐼𝐼 =  𝐿𝐿, a fixed boundary condition at 𝐼𝐼 =  0, and an initial velocity of 𝑣𝑣0 =  1 m. s−1. 
The discretization is shown in Figure 4. The material has a density of 𝜌𝜌 =  2000 kg, a Young’s modulus of 
𝐸𝐸 =  10 MPa and a Poisson’s ratio of 𝜈𝜈 =  0.0. The longitudinal displacement at the free end is obtained using 
different methods and compared to the analytical solution, as shown in Figure 6. The analytical displacement at 
any longitudinal coordinate of the bar is given as  

 

where 𝑐𝑐 =  𝐸𝐸/𝜌𝜌. The traditional SPH formulation (FORM = 0) yields an incorrect wave speed, and also suffers 
from tensile instability: as the initial compression wave bounces back to a tension wave, the bar separates into 
two components, as illustrated in Figure 5. With the renormalized formulation (FORM = 1), tensile instability is 
still present, but attenuated enough that the bar remains as one component. The accuracy is still quite poor, as 
illustrated by the incorrect wave period and amplitude shown in Figure 6. By contrast, the MLS-based 
formulation (FORM = 12) shows good agreement with the analytical solution, both in terms of period and 
amplitude of displacement, and coincides very well with the expected displacement derived in (18).  

 

 



15th International LS-DYNA® Users Conference SPH 

June 10-12, 2018  7 

 

 

Figure 5: Using a traditional SPH formulation, tensile instability allows the material to separate instead of 
developing tensile stress 

 

 

Figure 6: Longitudinal wave propagating in a 1D bar modeled with SPH, renormalized SPH and MLS-Based 
SPH, compared to analytical solution. 

 

Aluminum Sphere Impact Simulation 

A 1.27 mm thick aluminium alloy 6061-T6 plate is impacted by a S2 tool steel spherical projectile of diameter 
7.9 mm. Experimental data and a reference numerical simulation are presented in [14], along with material 
parameters for both the projectile and the plate. The ballistic limit is determined experimentally to be between 
𝑣𝑣bl0 =  128 m. s−1

  and 𝑣𝑣bl1 =  146 m . s−1. An illustration of the discretization employed and of the plate 
deformations during impact is presented in Figure 7. Figure 8 shows the obtained residual projectile velocity vs. 
impact velocity with SPH and MLS-Based SPH, compared to the reference simulation and the Recht-Ipson 
model [15] prediction. Since the ballistic limit is only identified as a range, the Recht-Ipson model is presented 
as an area in Figure 8. The traditional SPH formulation exhibits a very brittle behavior, likely due to tensile 
instability. This results in the material fracturing before dissipating energy through plastic deformations, and 
ultimately largely under-predicting the ballistic limit. The MLS-Based SPH on the other hand slightly 
overpredicts the ballistic limit, but overall agrees quite well with both the Recht-Ipson model and the results 
from the OTM simulation by Li et al. [14].  
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Figure 7: Aluminum impact simulation: Cross-section of the deformed shape during impact. 

 

 

Figure 8: Residual projectile velocity vs. impact velocity with SPH and MLS-Based SPH, compared to 
reference simulation [14] and Recht-Ipson model. 
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Blunt Steel Projectile Impact Simulation  

A 12 mm thick Weldox 460E steel plate is impacted by an Arne tool steel cylindrical projectile traveling at 
303.5m. s−1. The same simulation is carried with the traditional SPH method and with the present method. 
Detailed experimental data is available in [16], such as projectile exit velocity, plug mass and plug exit velocity, 
for example. The material has also been characterized and material parameters were identified in [17] for a 
modified Johnson-Cook material model. Figure 9 shows a cross-section of the simulation after impact, with 
both traditional SPH and MLS-Based. A qualitative comparison already shows important differences, both in 
the crater shape prediction and in the resulting plug after impact. A comparison of the velocity history of the 
projectile with the experimental final velocity is shown in Figure 10, and a table comparing various quantities of 
interest to this simulation is presented in Table 1, along with relative errors. The higher accuracy of the 
proposed method is evident, showing better agreement with experimental data on all variables studied in this 
problem.  

 

(a) Traditional SPH (FORM=0) 

 

(b) MLS-based SPH (FORM = 12). 

Figure 9: Steel impact simulation after perforation, cross-section view. 

 

 

Table 1: Comparison between experimental data, traditional SPH and MLS-Based SPH for different variables 
of interest. Relative errors between numerical method and experiment are also provided. 
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Conclusion 

A new SPH formulation has been implemented in LS-DYNA, greatly alleviating tensile instability issues and 
enhancing accuracy. The improved performance of the method was illustrated through simple examples, and a 
series of impact simulations was presented to validate the implementation. As opposed to fully Lagrangian 
formulations implemented in LS-DYNA (forms 7 and 8), this new framework provides great stability and 
accuracy while still being robust to extreme deformations and material fragmentation, as illustrated in the 
perforation simulation.  
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