x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Smoothed Particle Galerkin Method with a Momentum-Consistent Smoothing Algorithm for Coupled Thermal-Structural Analysis

This paper introduces a momentum-consistent smoothing algorithm to Smoothed Particle Galerkin (SPG) method [1] in LS-DYNA® for the coupled thermal-structural analysis. In contrast to the kernel approximation in conventional Lagrangian particle methods, the system of equations of the present method is discretized and approximated following that in the SPG method. The momentum-consistently smoothing algorithm provides the desired stability and accuracy in the thermal structural coupling applications. Furthermore, the algorithm is coupled with FEM with sharing nodes to increase the computational efficiency. Two benchmarks including heat flux and thermal expansion are studied to demonstrate the accuracy of the present method. In addition, the frictional drilling test is simulated to demonstrate the effectiveness of the proposed method in the coupled thermal-structural analysis involving material failure.