
15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 1

Productivity and Quality of LS-DYNA® Analyses:

Implementing a Tailor-made Software Solution
for the Transport and Storage of Radioactive Materials

Gilles Marchaud, Valérie Saint-Jean

ORANO TN, Montigny-le-Bretonneux, France

Abstract

For more than 50 years, ORANO TN (formerly AREVA TN) has been supplying customer-focused, innovative transportation and storage
solutions for radioactive material with the highest levels of safety and security.

Within a context of stringent regulations, ORANO TN performs LS-DYNA analyses to evaluate the crashworthiness of casks and to
reduce the number of costly real tests. Continuous effort is being made to improve these analyses. Part of the effort is dedicated to
Verification & Validation, i.e. ensuring that LS-DYNA, along with well-defined methodologies, provides realistic results.

Considerable effort is also being made to improve Productivity and Quality, with the aim of bringing more value to our customers.
Time-consuming, error-prone tasks have been identified in the whole analysis process: pre-processing, post-processing, model
checking, report writing and checking.

LS-PrePost® command files are already used by FE analysts on a day-to-day basis. Perl and Python scripts perform specific tasks such
as: low-pass filtering, stress linearization in bolt shanks, determination of extrema in xy-plot files,…

However, the need has arisen for a more comprehensive tool. For instance, when plotting the effective plastic strain contours on a
wooden part involved in energy absorption, the analyst has to manually set the fringe range bounds in order to check that the part is
not overly compacted. The information used for these bounds is the one used in the early phase of pre-processing, when defining material
properties. More generally, any data relevant in a given phase of the analysis process is likely to be relevant in the other phases.

Consequently, for more than two years, a Python library has been developed. Being object-oriented, it gives easy access to keywords.
It checks that *CONTROL parameters are set according to the best practice. It sets material properties from engineering values. It
performs advanced post-processing tasks on ASCII and binary output files.

The present paper will be illustrated with selected features of the Python library.

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 2

Introduction

Stringent safety regulations, such as [1], are applicable to the transportation or storage of radioactive material in
the best safety and security conditions.

ORANO TN performs LS-DYNA [2] analyses to evaluate the crashworthiness of casks and to reduce the number
of costly real tests.

Continuous effort is being made to improve these analyses.

Part of the effort is dedicated to Verification & Validation, i.e. ensuring that LS-DYNA, along with well-defined
methodologies, provides realistic results. Our approach has been presented in [3].

Considerable effort is also being made to improve Productivity and Quality, with the aim of bringing more value
to our customers. Our approach is presented below.

Analyzing the FEA tasks in terms of productivity and quality

Time-consuming, error-prone tasks have been identified in the whole FE analysis process:

- pre-processing,
- post-processing,
- model checking,
- report writing and checking.

Typical time-consuming and/or error-prone task items are listed in the following non-exhaustive table:

Task Item Goal / Question to be answered

Pre-processing

Dimensions/geometry Generate a solid/shell mesh on a CAD model.

Material data input Convert specified engineering properties into true
properties.

Definition of *CONTROL
parameters

Define *CONTROL_PARALLEL with the recommended
values for SMP consistency.

Post-processing

Energy-balance graphs Create energy-balance graphs for 12 parts and 8 cases.

Acceleration graphs Create acceleration graphs for 3 accelerometers, 2 cut-off
frequencies and 8 cases.

Contour plots

Create contour plots of maximum equivalent plastic strain
for 12 parts and 8 cases, with fringe range bounds adapted
according to the material type, e.g. an upper bound equal
to the ultimate strain for metals, a lower bound equal to
the compaction threshold for woods.

(Table to be continued…)

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 3

(Table continued from previous page)
Task Item Goal / Question to be answered

Model checking

Dimensions Do mesh dimensions match those in specified drawings?

Material data input Are true properties consistent with specified engineering
properties?

Definition of *CONTROL
parameters

Has *CONTROL_PARALLEL been defined with the
recommended values for SMP consistency?

Good convergence
Is the energy ratio close to 1?
Is the contact energy (excluding friction) small compared
to the maximum internal energy?

Report writing
and checking

Material-to-part assignment The analyst wants to insert figures showing which
material is assigned to which part.

Section-to-part assignment The analyst wants to insert figures showing which
thickness is assigned to which shell part.

Value tables The final value of equivalent plastic strain has to be
written down for 12 parts and 8 cases.

Insertion of figures Did the analyst insert the energy-balance graph for case
#3 and not for another case?

The need for automation originates from the need for quality and productivity and is strongly linked with human
and organizational factors:

Quality /
Productivity Item What automation

brings to the item Human and Organizational Factors

Quality

Traceability
The operations are recorded
and can therefore be checked
afterward.

The checker is not limited to checking the
final model/results. The checker can also
check the steps leading to them.

Repeatability

The operations are recorded
and can therefore be repeated
afterward with perfect
fidelity.

Correctly performing a sequence of
manual operations does not mean you
will perform them correctly once again,
and you will need to pay attention to each
operation.

Correctibility /
Continuous

improvement

The operations are recorded
and can therefore be repeated
afterward, after some
corrections.

Should the model need to be corrected
manually, the analyst corrects it and then
only needs to re-run the automated post-
processing task.
The analyst limits their efforts to the
steps that need to be corrected.

Productivity

Speed
The operations are recorded
and can therefore be repeated
afterward on demand.

Once the analyst has launched the
appropriate sequence of operations, the
analyst does not need to intervene.

Reusability /
Adaptability /

Know-how
capitalization

The operations are recorded
and can therefore be repeated
afterward for similar cases,
potentially with some
modifications.

The analyst limits their efforts to what
needs to be modified.
The analyst can capitalize on already
automated operations by integrating them
in a more complex task.

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 4

Automation: different ways, with pros and cons

Automation can be implemented in several ways such as:

- Pre-programmed treatment driven by a dialog box in a Graphical User Interface (GUI)
- “Purely sequential sequence” of operations (i.e. without loops, conditional constructs such as “if then

else”, …) listed in a command file, read by a GUI (e.g. LS-PrePost command files)
- Non-interactive program developed in a compiled language (e.g. C++ or Fortran)
- Non-interactive script developed in an interpreted language (e.g. Perl or Python).

The differences between a GUI and a program or script are mainly:

GUI vs. Program/script Pros Cons

GUI (*) User-friendliness

Usually proprietary
and not open source

=>
more or less adaptable by users

Program/script Highly adaptable to users’ needs Not interactive
Requires programming skills

(*) A GUI may have the pros of programs/scripts when it can be driven by a script.
Advanced programming is possible if the GUI proposes a comprehensive API

(Application Programming Interface), i.e. one that gives access to all features of the GUI.

The user-friendliness of a GUI is unparalleled:

- for exploring an unknown model
- for building a model from scratch
- for having a quick look at the model results (convergence, general behavior)
- for performing some post-processing task for the first time (dialog boxes are helpful for that).

Programs and scripts are very efficient for well-defined tasks that are repeated many times.

The differences between a (compiled) program and an (interpreted) script are mainly:

Program vs. Script Pros Cons

(Compiled) program High speed
Low memory usage

Many code lines
Slow debugging

(Interpreted) script Compact code
Fast debugging (*)

Low speed
High memory usage

(*) A normal run is in fact performed in debug mode, in such a way that
debugging is even possible when the script is exploited in production phase.

The low speed of scripts can be mitigated by encapsulating CPU-intensive operations in compiled programs. An
interpreted language like Python can be extended with modules developed in C++.

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 5

From low-scale automation to high-scale automation

LS-PrePost [4] command files are already used by ORANO TN’s FE analysts on a day-to-day basis.

Scripts in Perl [5] and Python [6] perform specific tasks such as:

- low-pass filtering,
- stress linearization in bolt shanks,
- determination of extrema in xy-plot files,…

However, the need has arisen for a more comprehensive tool.

For instance, when plotting the effective plastic strain contours on a wooden part involved in energy absorption,
the analyst has to manually set the fringe range bounds in order to check that the part is not overly compacted.
The information used for these bounds is the one used in the early phase of pre-processing, when defining material
properties.

More generally, any data relevant in a given phase of the analysis process is likely to be relevant in the other
phases.

LS-PrePost Scripting Command Language (SCL) was tested successfully for a CPU-intensive task: morphing a
large mesh by applying a complex mapping of nodal coordinates. The process was fast and the result was
immediately visible in the 3D graphics window. However, this C-like computer language was discarded due to
its lack of object-orientedness, of complex data structures such as variable-size lists or dictionaries (≈ arrays with
string indices), which would have compromised the expected development of increasingly complex tasks.

Consequently, for more than two years, a Python library named “PyDyna” has been developed by ORANO TN.

Being object-oriented, it gives easy access to keywords. It checks that *CONTROL parameters are set according
to the best practice. It sets material properties from engineering values. It performs advanced post-processing
tasks on ASCII and binary output files.

Some features are similar to those implemented in LS-DYNA-Tools (see DYNAmore web site [7]).

Selected features of “PyDyna” are presented below.

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 6

Examples of “PyDyna” features

The following table shows the excerpts of a Python script that uses “PyDyna” for both checking a model and
post-processing the results of 3 calculation cases. Even though the Python language is self-explanatory, the script
has been completed with comments in green:

(1/5) Excerpts from the Python script using “PyDyna”
-*- coding: cp1252 -*-
+---+
| Copyright (c) ORANO TN, 2018 - All Rights Reserved. |
+---+
import sys # System-specific parameters and functions
sys.path.append("<<path where pydyna is located>>")
import pydyna_2018_01_01 as pydyna
#---
+----------------+
| Import modules |
+----------------+
import os # Miscellaneous operating system interfaces
import math # Mathematical functions
(...)
#---

current_working_directory = os.getcwd()
main_dir = "."
sub_dirs = ["Case1", "Case2", "Case3"]

for sub_dir in sub_dirs: # Scan all sub-directories where cases have been run
 model1 = pydyna.C_LSDynaModel() # Instantiate an object of class “CLSDynaModel”
 #
 model1.set_language("EN") # Figures will be created with English text
 #
 post_dir_for_case = "POST_%s" % sub_dir
 model1.define_post_directories(post_dir_for_case)
 create_directory_if_absent(model1.path_for_post)
 #
 model1.log_print("#### " + sub_dir) # Print sub-directory name in log file
 #
 model_dir = os.path.join(main_dir,sub_dir)
 #
 file_name_k = "model.k"
 #
 if True: # Read keyword file
 bool_skip_nodes_elements = False # Skipping these would accelerate reading
 bool_skip_segsets = False # Skipping these would accelerate reading
 model1.read_keyword_file(os.path.join(model_dir,file_name_k), \
 bool_skip_nodes_elements,bool_skip_segsets)
 #
 if True: # Write keyword file
 model1.write_keyword_file(os.path.join(model_dir,"_cask_from_pydyna_.k"))

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 7

(2/5) Excerpts from the Python script using “PyDyna”

 #
 if True: # Define part groups, part tessellations, target masses
 #
 # A “part tessellation” is a set of part groups.
 # It is considered valid:
 # - if its part groups do not share common parts (no overlap),
 # - if it contains all the parts of the model (no hole).
 # This concept is currently unavailable in LS-PrePost.
 #
 # ==
 #
 pids_body = [101,103,105,356,359,1,2,3,4,5]
 pids_content = [106]
 pids_primary_lid = [333,334,335,336,337,6]
 pids_secondary_lid = [338,339,340,341,342,7]
 #
 pids_shock_absorber_sheets = [344,345,346,347,348,354,357]
 pids_shock_absorber_wood_1 = [349,350,353]
 pids_shock_absorber_wood_2 = [351]
 pids_shock_absorber_screws = [361,362,363,364]
 #
 pids_shock_absorber = []
 pids_shock_absorber.extend(pids_shock_absorber_sheets)
 pids_shock_absorber.extend(pids_shock_absorber_wood_1)
 pids_shock_absorber.extend(pids_shock_absorber_wood_2)
 pids_shock_absorber.extend(pids_shock_absorber_screws)
 #
 # (...)
 #
 # ==
 #
 # Part tessellation for mass distribution check
 #
 ptid = 1 # Part tessellation ID
 target_mass = None
 summed_target_masses = 0.0
 #
 target_mass = 0.5*(5.65e3) # Target mass for primary lid (half model)
 summed_target_masses += target_mass
 pids = pids_primary_lid
 pgid = 1100
 pydyna.C_PartGroup(model1,ptid,pgid,target_mass,"PL etc.",pids).add_to_model()
 #
 # (...)
 #
 target_mass = 0.5*(120.0e3) - summed_target_masses # Target mass of the rest
 summed_target_masses += target_mass
 pids = []
 pids.extend(pids_body)
 pgid = 1600
 pydyna.C_PartGroup(model1,ptid,pgid,target_mass,"ALL",pids).add_to_model()
 #
 model1.check_part_tessellation(ptid) # No overlap? No hole?
 #
 # ==

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 8

(3/5) Excerpts from the Python script using “PyDyna”

 #
 # Part tessellation for matsum (=> energy absorption per part group)
 #
 ptid = 2
 # (...)
 #
 # ==
 #
 # Part tessellation for contours (=> stress/strain contours per part group)
 #
 ptid = 3
 # (...)
 #
 # ==
 #
 if True: # Determine time step and mass scaling per part
 model1.determine_time_step_and_mass_scaling_per_part()
 #
 if True: # Check everything
 model1.check_everything(bool_determine_parts_from_segments = True)
 # If the above Boolean is set to False, “PyDyna” will not provide
 # information about which segment set belongs to which part(s)
 # (the presently implemented algorithm is CPU-intensive).
 #
 ##### POST-PROCESS RESULTS #####
 #
 if True: # Read ASCII file "messag" (initial timestep, contact stability timesteps)
 model1.read_messag(os.path.join(model_dir,"messag"))
 #
 if True: # Read ASCII file "d3hsp" (check masses)
 options = pydyna.C_Options("read_d3hsp")
 options.part_tessellation_IDs_for_mass_distribution = [1]
 #
 model1.read_d3hsp (os.path.join(model_dir,"d3hsp"),options)
 #
 if True: # Read ASCII file "glstat"
 options = pydyna.C_Options("read_glstat")
 options.bool_display_final_energies_on_graph = True
 #
 model1.read_glstat(os.path.join(model_dir,"glstat"),options)
 #
 if True: # Read ASCII file "matsum"
 options = pydyna.C_Options("read_matsum")
 # Internal energies will be summed per part group
 options.part_tessellation_IDs = [0, 2]
 # Partial sums will be plotted, along with a residual sum less than 0.1%
 options.matsum_cumulated_part_internal_energy_threshold_percentage = 99.9
 options.bool_execute_lspp = False # Do not plot graphs with LS-PrePost
 options.bool_execute_gnuplot = True # Plot graphs with Gnuplot
 #
 model1.read_matsum(os.path.join(model_dir,"matsum"),options)

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 9

Running “model1.determine_time_step_and_mass_scaling_per_part()” prints such lines in the log file:

 Part 1 : 0.645 kg ; 0.01 m/s ; … us <= dt_stab <= … us
 Part name = <accelerometer>
 Part mass = 0.645129 kg
 Nodal mass = 0.645129 kg (deformable area)
 Nodal mass in rigid body = 0.00138262 kg (rigid area)
 Dependencies:
 <nodal_mass> 0.645129 <- 0.645129 <- {
 'MAT_1_RO': 1.761296199999966e-07,
 'MAT_101_RO': 7.746642780882494e-05}
 <nodal_mass_in_rigbdy> 0.00138262 <- 0.00138262 <- {
 'MAT_1_RO': 1.761296199…e-07}
 <nodal_mass_from_other_parts> 0.645129 <- 0.645129 <- {
 'MAT_1_RO': 1.761296199999966e-07,
 'MAT_101_RO': 7.746642780882494e-05}

Mass scaling is thus predicted without running LS-DYNA. Auto-adjustment is made possible.

In general, part masses are linear combinations of material densities and rigid part prescribed masses. Shared
nodes between deformable and rigid parts complicate the task of model mass adjustment. “PyDyna” provides the
coefficients of these linear combinations, which will make it possible to adjust model masses automatically from
linear constraints such as: prescribed or changeable mass densities, part group prescribed masses.

Running “model1.read_matsum(…)” creates figures such as Figure 1:

Figure 1: History of “matsum” internal energies, cumulated per part group,

sorted per final value in descending order,
with a residual sum “Other part groups” below 0.1%.

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 10

(4/5) Excerpts from the Python script using “PyDyna”

 #
 if True: # Read ASCII file "secforc" (screw cross-section forces)
 #
 F0_primary_lid = XXXe3 # [N]
 F0_secondary_lid = XXXe3 # [N]
 F0_shock_absorber = XXXe3 # [N]
 #
 prescribed_initial_tension = None
 screw_shank_diameter = 0.0XX # [m]
 tightening_shear_stress = XXXe6 # Shear stress [Pa] due to tightening
 yield_stress = None
 ultimate_stress = None
 method = "BAM-GGR 012 Nov. 2012" # Linearization method
 #
 options = pydyna.C_Options("read_secforc") # Object used to contain options
 #
 options.cross_section_groups = []
 #
 # Append to the list above data about each cross-section group:
 #
 # options.cross_section_groups.append(
 # {
 # "description": "(...)",
 # # Cross-section IDs:
 # "csids" : [id_offset+k for k in range(1,scr_count+1)],
 # # Orientation of x-section axis (for tension/bending components):
 # "axis" : "+x",
 # # The first and last cross-sections belong to half screws:
 # "sym_planes" : { id_offset+1:"xy", id_offset+scr_count:"xy" },
 # "prescribed initial tension" : prescribed_initial_tension,
 # "screw shank diameter" : screw_shank_diameter,
 # "tightening shear stress" : tightening_shear_stress,
 # "yield stress" : yield_stress,
 # "ultimate stress" : ultimate_stress,
 # "calculate stresses according to": method
 # } \
 #)
 #
 # (...)
 #
 # Minima, maxima, averages will be computed in the following ranges:
 # - 1st range [1.5 ms , 2.5 ms] is used to check prescribed initial tension
 # - 2nd range [49 ms , 50 ms] provides residual tension after 9.3m drop
 options.ranges_for_min_max_avg = [[1.5e-3, 2.5e-3],
 [49.0e-3, 50.0e-3]]
 options.maximum_time = None
 options.bool_save_stresses_per_section = True
 options.bool_execute_lspp = False
 options.bool_execute_gnuplot = True
 #
 model1.read_secforc(os.path.join(model_dir,"secforc"), options)

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 11

(5/5) Excerpts from the Python script using “PyDyna”

 #
 # (...)
 #
 if True: # Read d3plot files and save stress/strain stats per part to ASCII files
 rd3p_options = pydyna.C_Options("read_d3plot")
 #
 t1 = 0.0e-3
 # Get termination time from LS-DYNA model:
 t2 = model1.get_keyword_field_value("*CONTROL_TERMINATION", None, "ENDTIM")
 dt = 0.1e-3
 # Process “d3plot” files at initial time and final time:
 rd3p_options.only_time_ranges = [[t1-dt,t1+dt], [t2-dt,t2+dt]]
 #
 # The effective plastic strain stats will be determined
 # on solid element sets read in an auxiliary keyword file:
 rd3p_options.solid_set_file_name = "solid_element_sets_for_final_eps.k"
 rd3p_options.solid_set_IDs = [1,2,3,4,5,6,7,8,9,10,11]
 #
 # (...)
 #
 model1.read_d3plot(d3plot_file_name = os.path.join(model_dir,"d3plot"),
 options = rd3p_options)
 #
 if True: # Plot strain/stress contours
 generalized_part_group_IDs = [3100, 3200] # Part group IDs are positive
 for pid in [362, 312]:
 if pid in model1.part_IDs:
 generalized_part_group_IDs.append(-pid) # Part IDs are negative
 generalized_part_group_IDs.extend(
 ["SolidSet%d" % sid for sid in [1,2,3,4,5,6,7,8,9,10,11]])
 # Solid set IDs are given as “SolidSetXXX” strings
 #
 # The reference view is LS-PrePost “top” view (xy-plane),
 # rotated around the graphics window vertical axis by +90°:
 q0 = top().ry(90.0) # q0 is a quaternion; is rotated by function .ry(θ°)
 views = []
 for j in range(0,4+1):
 for i in range(0,4+1):
 # The reference view is rotated around the vertical axis by +/-30° or
 # +/-60°, and then rotated around the horiz. axis by similar angles:
 views.append(q0.ry(30.0*(2-i)).rx(30.0*(2-j)))
 #
 options = pydyna.C_Options("draw_field_contours")
 #
 options.generalized_part_group_IDs = generalized_part_group_IDs
 options.solid_set_file_name = "solid_element_sets_for_final_eps.k"
 options.views = views
 options.title = None
 options.bool_identify_extremum = False
 options.bool_execute_lspp = False
 options.bool_execute_gnuplot = True
 #
 model1.draw_field_contours(d3plot_file_name = os.path.join(model_dir,"d3plot"),
 options = options)
 #
 # ==

15th International LS-DYNA® Users Conference Modeling

June 10-12, 2018 12

Running “model1.draw_field_contours(…)” prints such lines in the log file:

 Part group 3100 <Shell> pids={101,103,359}
 Part 101 has EPSU_true = 0.XXXXXX.
 Static range for eps_p : [0.001 ; EPSU_true=0.XXXXX]

The part group 3100 named “Shell” contains 3 parts. They all use a *MAT_PIECEWISE_LINEAR_
PLASTICITY material (information obtained in the keyword file). This material models the behavior of metals.
The static range for the effective plastic strain contours is then automatically set to [0.1% ; ultimate effective
plastic strain εu of the first material]. No warning message says that the other 2 materials have different values
of εu. Should the case have arisen, the upper bound would have been set to the minimum of the 3 values.

Conclusion

ORANO TN makes continuous effort to improve LS-DYNA analyses when evaluating the crashworthiness of
casks for the transportation or storage of radioactive material.

Part of the effort is dedicated to Verification & Validation.

Considerable effort is also being made to improve Productivity and Quality. For more than two years, a Python
library has been developed as a comprehensive tool that covers most of the phases of the analysis process, with
fruitful usage of model data in the post-processing phase.

References

[1] International Atomic Energy Agency (IAEA): “Regulations for the Safe Transport of Radioactive Material – Safety
Requirements – IAEA Safety Standards Series No. TS-R-1”, 2009 Edition, Vienna, Austria, 2009

[2] LIVERMORE SOFTWARE TECHNOLOGY CORPORATION (LSTC): “LS-DYNA Keyword User's Manual – Volumes I

and II – Version 971 R6.1.0”, August 2012.

[3] Marchaud G., Saint-Jean V. (AREVA TN): “Verification and Validation of LS-DYNA for the Transport and Storage of

Radioactive Materials”, Proc. 11th Eur. LS-DYNA Conf., Salzburg, Austria, 2017.

[4] LS-PrePost web site www.lstc.com/lspp/ [Accessed Jan. 11, 2018].

[5] Perl programming language web site www.perl.org [Accessed Jan. 11, 2018].

[6] Python programming language web site www.python.org [Accessed Jan. 11, 2018].

[7] DYNAmore web site, LS-DYNA-Tools page www.dynamore.de/en/products/tools [Accessed Jan. 15, 2018].

http://www.lstc.com/lspp/
http://www.perl.org/
http://www.python.org/
http://www.dynamore.de/en/products/tools

	Productivity and Quality of LS-DYNA® Analyses: Implementing a Tailor-made Software Solution for the Transport and Storage of Radioactive Materials
	Abstract
	Introduction
	Analyzing the FEA tasks in terms of productivity and quality
	Automation: different ways, with pros and cons
	From low-scale automation to high-scale automation
	Examples of “PyDyna” features
	Conclusion
	References

