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Abstract 
 
In the last few years, numerous research work has been devoted to Isogeometric Analysis (IGA). IGA is a finite element technology in 
which computer-aided design (CAD) geometric description is invoked to perform numerical analysis. The most widely used 
mathematical description in CAD is non-uniform rational B-splines (NURBS) and therefore NURBS-based shell and solid finite 
elements have been implemented into LS-DYNA. 
This paper describes the recent advances of the NURBS-based shell implementation in LS-DYNA to enable the IGA technology for the 
use in sheet metal forming applications. Necessary features like stress, strain, thickness, and history variable mapping from one stage 
to the other, the trimming of the formed part and other typical features used by the forming analysts have been enabled for the use 
with NURBS-shells. The new keywords will be explained and the multistage forming process will be analyzed by means of an example. 
A comparison with current state-of-the art methods is provided and further developments are outlined.  

 
 
 
 

1 Introduction to Isogeometric Analysis 
 

This section introduces the rather new finite element technology, called isogeometric analysis (IGA). The term 
IGA was introduced by Hughes et al. [1] in 2005, in analogy to the term “isoparametric”. While the standard 
“isoparametric” approach in finite element analysis indicates that the geometry representation as well as its 
deformed solution space is approximated using the identical shape functions, which are in general low order 
Lagrange polynomials. The “isogeometric” idea goes one step further and states that the geometry description 
used in the computer aided design (CAD) shall be used in the analysis as well. One of the largest initial 
motivations for developing IGA was the hope to better integrate the CAD-models with the subsequent finite 
element analysis in order to cut down significantly the labor time needed to reparametrize (mesh) the CAD 
geometry for doing the analysis. Although this particular possible advantage couldn’t be compellingly proven 
yet, the use of higher order shape functions, i.e. NURBS may yield better results while having the possibility of 
using larger element-sizes. Furthermore, the use of the IGA technology may help to reduce the discretization 
error that may result from the re-parameterization of the CAD design. A schematic comparison of the meshing 
procedure between standard finite elements and isogeometric analysis is shown in Fig.1. It can be seen that the 
geometry representation based on linear Lagrange polynomials will lead to a discretization error that can only 
be reduced to a tolerable value by doing mesh-refinement. With the IGA approach, the initial CAD geometry 
can be directly used for analysis and necessary mesh-refinements for enlarging the solution space will leave the 
geometry unchanged. 
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Various mathematical descriptions are used in the different CAD packages, but amongst them NURBS play a 
dominant role. That is why many researches in the area of IGA focus on NURBS and so does the IGA 
implementation in LS-DYNA. 
 

 
Fig.1: Comparison of meshing for standard finite elements and IGA 

 
 
 
 

2 NURBS 
 
Some basic properties of NURBS will be presented in order to be able to understand some significant 
differences of using NURBS instead of Lagrange polynomials for finite element analysis. As the few 
subsequent descriptions may only give a rough idea about NURBS, the interested reader is referred to the 
monograph by Piegl and Tiller [2]. 
 

2.1 B-Splines 
 
Given the name Non-uniform rational B-Splines it is obvious that NURBS are built from B-Splines. B-Spline 
basis functions are constructed in a recursively manner, starting with a constant basis function and then 
increasing the order in every recursive step until the desired degree is reached (see Fig.2) 
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Fig.2: B-spline basis functions of order 0, 1 and 2 for uniform knot vector [3] 

 
The recursion formula is given by 
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In here iξ  is the ith knot of the so-called “knot-vector” 1 2 1, ,..., n pξ ξ ξ + + Ξ =   , which is a non-decreasing set of 
coordinates in the parametric space. The degree of the basis functions is given with p  and finally n  represents 
the number of basis functions defined through the knot-vector. It has to be noted that B-spline basis functions 
are always and everywhere positive regardless of their degree, which is a significant difference compared to 
higher order Lagrange Polynomials (see Fig.3). Furthermore B-Spline basis functions constitute the important 
partition of unity property and exhibit a Cp-1-continuity along the internal element boundaries if no multiple 
knot values are present in the knot-vector. 
 

 
Fig.3: Comparison of Curves represented by Lagrange polynomials (left) and B-spline basis 

functions(right)given the same set of nodes and control points, respectively [3] 
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The construction of B-spline curves is similar to the way this is done using Lagrange polynomials, with one 
important difference. Instead of interpolating the curve through the nodal coordinates (see Fig.3 left), B-spline 
curves use so-called control points, which are used as coefficients of the B-spline basis functions. As can be  
 
seen in Fig.3 (right), these control points are most of the time not a part of the actual geometry which is due to 
the non-interpolatory nature of the B-Spline basis functions. A B-spline curve ( )ξC  is defined through a linear 
combination of the B-spline basis functions with the corresponding control points iB . 
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The step from B-splines to NURBS is achieved by introducing an additional parameter to every control point 
which is called a weight. Using the weights iw at the control points, the NURBS basis functions ( )p

iR ξ  are 
constructed as follows: 
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A NURBS curve is then defined in the same way as a B-spline curve, by substituting the B-spline basis 
functions in Equ. (2) with the NURBS basis functions in Equ. (3). 
 
 
 

2.2 NURBS surfaces 
 
The step from defining NURBS curves to NURBS surfaces is straight forward and can be easily extended to 
define NURBS solids. Starting with the univariate B-spline basis functions discussed in the preceding section, 
the necessary NURBS basis functions to finally describe a NURBS surface are constructed using a tensor 
product on these univariate basis functions and combine them with the weights at the control points. In 
mathematical terms the bi-variate NURBS basis functions are defined as follows: 
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Given the bi-variate NURBS basis functions, NURBS surfaces are then constructed in a similar way as NURBS 
or B-spline curves through a linear combination of these basis functions with their corresponding control points. 
A typical NURBS surface is shown in Fig. 4.  

 
Fig.4: NURBS surface with the control points (red dots) in physical space (left) 

and in parametric space (right) 
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It can be seen, that in the parametric space a more or less regular grid of control points in a rectangular 
parametric space is defined. Mapping this into the physical space leads to some restrictions of defining any 
specific boundary of the surface or even digging holes into it. To circumvent this limitation, so-called trimmed 
NURBS are generally used in the CAD programs. Trimmed NURBS surfaces are defined by adding an 
unlimited number of so-called trimming curves, which actually define which part of the represented surface  
 
shall be an actual part of the given geometry. Fig. 5 shows a trimmed NURBS surface that uses the exact same 
underlying representation of the NURBS surface shown in Fig. 4, just by adding two additional trimming curve 
definitions that specify the outer boundary of the actual geometry and a hole inside it. 
 

 
Fig.5: Trimmed NURBS surface with control points in physical space (left) 

and in parametric space (right) 
 
Trimmed NURBS surfaces are a widely used standard in CAD programs, so the capability of doing 
isogeometric finite element analysis on trimmed NURBS surfaces is one of the key requirements. The NURBS 
shell implementation in LS-DYNA supports the analysis on trimmed surfaces. 
 
 
 

3 NURBS shells in LS-DYNA 
 
This section summarizes quickly the current possibilities of using NURBS surface representations for doing 
isogeometric finite element analysis in LS-DYNA. 
Starting off a FEA using NURBS shells necessitates the appropriate definition of NURBS surfaces, which are 
called NURBS patches in LS-DYNA. The keyword to be used is *ELEMENT_SHELL_NURBS_PATCH or 
*ELEMENT_SHELL_NURBS_PATCH_TRIMMED in case of trimmed NURBS surfaces. Generally any material 
model available for standard shell elements may be used in combination with the NURBS shells. Currently 
there are five different NURBS shell formulations available, that differ basically in the way the normal of the 
shell is approximated. There are shell formulations based on the classical Kirchoff-Love shell theory as well 
formulations based on the shear-deformable Reissner-Mindlin theory. As basis functions with higher continuity 
across the element boundaries allow for element formulations that do not need any rotational degrees of 
freedom, also rotation free NURBS shells are available in LS-DYNA. More information on the implemented 
shell formulations can be found in the papers from Benson et al. [4], [5]. Likewise it is done for standard shell 
elements, each NURBS patch will be assigned to an appropriate *PART, that defines the material model to be 
used (*MAT_XXX) and the section properties of the shell (*SECTION_SHELL). For doing an analysis with 
NURBS shells, the parameter ELFORM in *SECTION_SHELL has to be set to 201. 
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In the previous section about NURBS it became obvious, that the control points are not necessarily a part of the 
actual geometry. This fact makes it a little bit more complicated to actually apply necessary boundary 
conditions at the spot they should be. To do so, the keyword *CONSTRAINED_NODE_TO_NURBS_PATCH is 
available, which allows to define a massless node at any location on the actual NURBS surface and tie it to the 
NURBS patch. Having defined this particular location on the NURBS surface one may apply either Neumann 
or Dirichlet boundary conditions at this spot. 
For dealing with contact boundary conditions basically two options are available. The first one is based on so-
called interpolation elements. When doing an isogeometric analysis, LS-DYNA automatically creates a kind of 
background mesh consisting of standard bi-linear shell elements that are placed on the NURBS surface. The 
necessary interpolation nodes that are created for that are fully constrained to the underlying NURBS patch  
 
description. Having this interpolation mesh in place, any standard penalty based contact formulation available in 
LS-DYNA can be used directly. The second possibility actually uses the real smooth description of the NURBS 
surface in the sense of a Node-To-Surface contact description. For this, the interpolation nodes on the slave side 
are projected onto the master surface which is described by the NURBS basis functions. This second approach 
can be activated by setting IGACTC=1 in *CONTROL_CONTACT. 
From an analysis perspective, the NURBS-based finite shell elements are available for explicit as well as for 
implicit analysis. They are supported in SMP (shared memory parallel) and MPP (massive parallel processing). 
Furthermore a conventional type of mass scaling [6] has been implemented for the NURBS shell elements as 
well as the possibility to treat them as rigid bodies. 
 
 
 

4 Sheet metal forming with NURBS shells  
 
Making the finite element analysis with NURBS shells in LS-DYNA a sound alternative in real world 
industrial-applications, numerous possibilities and features that have been developed over the last decades for 
standard finite elements must be made available for NURBS shells as well. In this section the focus is set on the 
recent advances of the NURBS shell implementation for the use in sheet metal forming application. 
A more or less classical forming simulation consists of various steps that are generally analyzed within a multi-
stage analysis. These stages may be deep-drawing, trimming, hemming, springback and others. No matter what 
the individual stage may look like, one major feature that needs to be supported by an analysis tool is to map the 
results achieved from one stage to the other. The results that are mainly mapped are the current stress and strain 
states, the equivalent plastic strain and the thickness variation due to the forming process. In LS-DYNA this is 
typically done via a so-called DYNAIN-file using the keyword *INTERFACE_SPRINGBACK. So once the 
analysis of one stage is finished, the required data is written out to this particular file and then in the next stage, 
this file is read back in in order to reinitialize the necessary values. To support this approach with NURBS 
shells two new keywords have been added to LS-DYNA, namely *INITIAL_STRESS/STRAIN_SHELL_
NURBS_PATCH (see Fig.6). 
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Fig.6: Keyword to support data mapping between various stages 
 

When defining the keyword *INTERFACE_SPRINGBACK for a particular analysis stage, LS-DYNA will 
automatically create a DYNAIN-file and write out for every NURBS-element (EID) the required solution 
values (stresses – SIGx, equivalent plastic strain – EPS and history variables - HISVx) at every integration 
point (NPLANE*NTHICK) using the keyword shown in Fig.6. The identical procedure can be made to map the 
strain values and the thickness variation. 
 
 

 

Fig.7: Von Mises Stress distribution: end of stage 1 (op10 - left) and beginning of stage 2 (op20 –right) 
 

In Fig.7 you can see a little example that shows the von Mises Stress distribution at the end of the first stage and 
at the beginning of the second stage after reading back in the results file. Another important issue in forming 
applications is the trimming of the formed component. The support of this feature is currently under 
development for IGA shells and will be available soon (see Fig.8). 
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Fig.8: A deformed shell NURBS patch before (left) and after trimming (right) 

 
 

5 Multistage forming process 
  

Unfortunately the analysis of a multistage forming process to present the current capabilities and to compare it 
with respect to the current state-of-the art methods is still work in progress. These studies will be carried out 
until the date of the actual conference and presented there. 
 
 

6 Conclusion 
 

LSTC is working on adding more and more features that can be used together with Isogeometric NURBS shells 
in LS-DYNA. The current paper mentioned some recent advances that have been implemented in the context of 
forming analyses. Although the very important mapping ability via *INTERFACE_SPRINGBACK is now 
supported there is still some work to do in order to make the IGA technology available for general use in  
 
industrial applications. One standard feature that is generally used in forming applications is the possibility to 
do adaptive mesh refinement in all the areas where this is needed. This fundamental topic hasn’t been addressed 
yet for NURBS shells and will be another important step to be done. 
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