
15th International LS-DYNA® Users Conference Isogeometric Analysis 

June 10-12, 2018 1 

 
Recent Developments in Isogeometric Analysis with 

Solid Elements in LS-DYNA® 
 

Liping Li  
David Benson  

Attila Nagy  
Livermore Software Technology Corporation, Livermore, CA, USA 

 
Mattia Montanari 

Nik Petrinic 
Department of Engineering Science, University of Oxford 

Parks Road, OX1 3PJ, Oxford, UK 
 

Stefan Hartmann 
Dynamore GmbH, Stuttgart, Germany 

 
Abstract 

 
Isogeometric analysis (IGA), which uses the same geometry from CAD (computer-aided design) for numerical analysis, has been 
studied more and more in the past few years. The continuous development of IGA with shell and solid element has been added to 
LS-DYNA. Many of the standard analysis capabilities in LS-DYNA are now available for IGA such as explicit and implicit analysis. In 
this paper, we will provide updates on IGA: dynamics analysis using IGA solid, the implementation of user defined material including 
anisotropic material modeling and support for unstructured Spline capabilities through their Bézier extractions. 

 
 

1. Introduction 
 
IGA was introduced by Hughes [1] with the goal that the numerical analysis model is the same as the geometry 
from Computer Aided Design (CAD). Indeed, the finite element analysis (FEA), which is more and more 
widely used to solve various engineering problems, has a big limitation, that is, it can only approximate CAD 
geometries. This approximation limits the modeling fidelity, for example mesh generation, mesh refinement, 
sliding contact, flows about aerodynamic shapes, etc. Moreover, IGA adopts the same mathematical description 
for the geometry as in the CAD to replace the piecewise continuous Lagrangian polynomial which is the 
traditional interpolation function used in the FEM. At the same time, it can use the same framework of 
numerical method as in FEM.  
 
There are however barriers to the applicability of IGA. Firstly, the behavior of IGA solid elements is not well 
understood. Secondly, modern CAD models are collections of surfaces and thus not suitable for analysis of 
solid structures. It is mainly for these reasons that, to date, IGA has limited industrial applications. The aim of 
the present work is to extend the applicability of IGA to solids modelled with complex material models. This 
paper is a part of that research effort and provide updates and guidelines to adopt IGA in industrial applications. 
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This paper is organized as follows: 
In section 2, the basic ideas of Non-Uniform Rational B-Splines (NURBS) based IGA and Bézier-based IGA 
are introduced. Primary results of the IGA in LSDYNA will shown in section 3, including stress wave in solid 
rod, anisotropic material analysis and eigenvalue analysis on Bézier-based isogeometric models. Section 4 
closes with some summary and an outlook. 
 
 

2. Method 
 

2.1 NURBS-based Isogeometric analysis 
 
A NURBS is a piecewise polynomial splines that can efficiently represent complex geometries and conics (e.g. 
circles and ellipses). A NURBS curve can be represented as: 
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where Pi is the control points, the index p is the order of the B-spline and n is the number of control points, wi is 
the weight factor, and  Ri,p(ξ) =

Ni,p(ξ)wi

∑ Ni,p(ξ)wi
n
i=1  

.   

 
The tensor product construct is used to define NURBS volumes (solid). Given a net of control points {Pi,j,k}, 
i=1,2,…n, j=1,2,…m, k=1,2,…,l, and three knot vector U1 = �ξ1,  ξ2, … , ξn+p+1� ，U2 = �η1,  η2, … , ηm+q+1� 
and U3 = �ζ1,  ζ2, … , ζl+r+1�, the NURBS volume can be constructed as:  
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where wi,j,k  is the weight factor, and  Rijk,pqr(ξ, η, ζ) = Ni,p(ξ)Nj,q(η)Nk,r(ζ)wi,j,k

∑ ∑ ∑ Ni,p(ξ)l
k=1 Nj,q(η)m

j=1  Nk,r(ζ)wi,j,k
n
i=1  

. An example of NURBS 

volume is shown in Fig. 1. 

 
Figure 1 A NURBS volume example 
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In LS-DYNA, the keyword *ELEMENT_SOLID_NURBS are used to define the solid NURBS element, in 
which the information of knot vector, polynomial order and weight factors are defined. LS-DYNA will 
automatically calculate the basis functions and give the geometry of NURBS volume.  

 
2.2 Bézier-based Isogeometric analysis 

 
The Bézier extraction operator is a tool to decompose a set of NURBS or T-Spline basis functions to the 
Bernstein polynomials. It allows numerical integration of smooth functions to be performed on C0 Bézier 
elements, giving a local representation of the basis functions. 
A degree p Bézier curve is defined by a linear combination of p+1 Bernstein polynomial basis functions: 
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where Pa is the control points,  Ba,p is the Bernstein polynomial basis function. 
The Bernstein polynomial basis function can be defined recursively as 

, , 1 1, 1( ) (1 ) ( ) ( )a p a p a pB B Bξ ξ ξ ξ ξ− − −= − +                                                               (4) 
and  

1,0 ( ) 1B ξ =                                                                                    (5) 

, ( ) 0 1 1a pB if a or a pξ = < > +                                                              (6) 
 

From Bernstein polynomial basis function, it is easy to get NURBS basis function by: 
( ) ( )N CBξ ξ=                                                                                (7) 

where C is the Bézier exaction operator. An example of how N and B basis functions look like is shown in Fig. 
2. More details can be found in [2]. 

 
Figure 2 The basis functions over the knot span [0, 1[ from (a) the NURBS basis and  

(b) the Bernstein basis. 
 

 
In LS-DYNA, the keyword *INCLUDE_TRANSFORM is used to include the Bézier extraction operator, 
control points and weight information. LS-DYNA will automatically calculate the basis functions and return the 
geometry.  
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3. Analysis of IGA solid cases 

 
3.1 Stress wave in solid rod 

 
A uniaxial compression test specimen is loaded axially and the propagating stress wave is analyzed using IGA 
and FEA. The geometry of the specimen is a cylindrical solid rod of diameter d = 4.6 mm and length l = 8.0 
mm. It is assumed elastic isotropic material, therefore MAT 001 is used, with Young’s modulus E = 1.04 MPa, 
Poisson ratio ν= 0.3 and density ρ = 8.0e-9 m3/kg. A resultant force of 8310N is applied perpendicularly to one 
side of the rod, this is the input face. The load history is shown in Fig. 3, where the rising time tr = 1/10 c and 

the striker time tst = 9/10 c for a speed wave c = �E
ρ
. 

 
Figure 3 Axial pulse load history. 

 
The solid rod is described using two analysis elements: hexahedral finite elements (ELEMENT SOLID) and a 
single NURBS patch (ELEMENT SOLID NURBS PATCH). Two examples of FEA and IGA are illustrated in 
Fig. 4. 
 

 
Figure 4 Spatial discretization of solid rod with FEA (a) and IGA (b) 

 
Two levels of refinement are studied for both element types. A coarse FEA mesh is built with NC = NA =80, 
and a finer one with NC = NA = 110. The tri-variate NURBS patches are defined by mapping the parametric 
direction t to the axial direction, and r, s to the cross section. A coarse patch is defined by 20 intervals between 
the extrema of knot vector TΞ  and 6 intervals for RΞ , SΞ , and polynomial orders pT = 4 and pR,pS = 2. This is 
then refined to obtain a finer patch by doubling the internals for each knot vector, and p-refining of two orders 
each parametric direction. 
 
For each one of the four FEA and IGA meshes, the tests are repeated using 1, 4 and 8 cores. This section 
compares the performance and the Von Mises stress obtained with FEA and IGA. The CPU time for each 
simulation is shown in Fig. 5(a). As expected, the coarse FEA mesh runs faster, while the finer IGA mesh 
results double as expensive. However, by looking at the CPU time for the other two meshes, IGA seems to scale 
better than FEA. This is confirmed by the relative gain in Fig. 5(b).   
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We can conclude that these (small) IGA models scale better on multiple cores than FEA. This is due to the more 
expensive element formulation of the former. Results are collected in Table 1.  
 
The Von Mises stress predicted by FEA and IGA are compared. Fig. 6 and Fig. 7(a)-(b) show the stress 
distribution when the front of the travelling stress wave first reaches the middle of rod. Fig. 7(c)-(d) show stress 
isosurfaces when the front of the wave reaches the middle of the rod after bouncing back and travelling toward 
the input face. Despite the IGA mesh topology (see Fig. 4) introduces elements with poor aspect ratio, in all 
cases the stress distribution captured by IGA results significantly more homogeneous. More details of this study 
can be found in our former work [3]. 

 
Table 2 Profile results for the uniaxial pulse in solid rod test 

 
Test ID Method P Runtime 1 

cores (min) 
Runtime 4 
cores (min) 

Runtime 8 
corse (min) 

01 IGA 2,2,4 91 26 16 
02 IGA 4,4,6 173 70 58 
03 FEA 1 30 10 8 
04 FEA 1 83 27 21 

 

 
Figure 5 CPU time for solid rod test case. (a) Compares how CPU time of FEA and IGA scale for different 

levels of refinement as the number of cores increases. (b) Shows the relative gain for the same meshes. 
 
 

 
Figure 6 Compression of solid rod. Von Mises stress contour plots a t=tst/2. 
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Figure 7 Von Mises stress distribution at t = tst/2 for FEA (a) and IGA (b),  

and at t = tst/0.5 for FEA (c) and IGA(d). 
 
 

3.2 Anisotropic Material Analysis 
 
We can now analyze anisotropic elastic and plastic material as well as isotropic material, such as 
*MAT_22,*MAT_033, *MAT_USER_DEFINED_MATERIAL_MODELS and etc.   
The R-value (also called Lankford value, or plastic strain ratio) is a measure of the plastic anisotropy. If  x and 
y  are the coordinate directions in the plane of the model and z is the thickness direction, then the R-value is 
given by 

p
xy
p
z

R
ε
ε

=                                                                                   (8) 

Where ϵxy
p   is the plastic strain in-plane and ϵz

p is the plastic strain through-the-thickness. 

 In this study case, we selected a specimen shown in Fig. 8. The plasticity and anisotropic character is defined in 
*MAT_USER_DEFINED_MATERIAL_MODELS in Fig. 9. The Lankford values are set as R00=0.6, R45=0.7, 
R90=0.8.  And we compared two cases: the first one with vector a=[1 0 0], vector d=[0 1 0] which corresponds 
to R00; the second with vector a=[0 1 0], vector d=[-1 0 0] which corresponds to R90. The results are shown in 
Fig. 10 and show that the ratio of the in-plain strain and the through-the-thickness strain correspond to the input 
Lankford value. 
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Figure 8 Anisotropic analysis model 

 
 
 

 
 

Figure 9 User defined material model 
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(a) Case I: y-strain 

 

(b) Case I: z-strain 

 

(c) Case II: y-strain 

 

(d) Case II: z-strain 

Figure 10 in-plain and through-the-thickness strain for case I and case II.  
Case I: R=0.6; Case II:R=0.8. 

 
3.3 Eigenvalue analysis with Bézier-based isogeometric model  

 
The Bézier extraction operator allows numerical integration of smooth functions to be performed on C0 Bézier 
elements. It gives a local representation of the basis functions, which make it possible to do local refinement on 
isogeometric element, while NURBS precludes local refinement because of its tensor product structure. For this 
reason, we started to implement Bézier-based isogeometric analysis in LS-DYNA.  
 
Following we present three eigenvalue analyses of Bézier-based isogeometric models in LS-DYNA. The first 
model is a cross-hole (Fig. 11); the second one is a base model (Fig.12) and the third is a statue model (Fig. 13).  
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Figure 11 3rd eigenvalue result of the Cross-hole model 
 

 
Figure 12 3rd eigenvalue result of the base model 
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Figure 13 2nd eigenvalue result of the statue model 
 
 
 

4. Conclusion 
The basic ideas of IGA have been introduced along with a brief introduction of NURBS and Bézier extraction. 
Three study cases: stress wave in solid rod, anisotropic material analysis and eigenvalue analysis of Bézier-base 
isogeometric models are described to show LSDYNA capability to do various analysis on different 
isogeometric models. Future work will continue the development of IGA capabilities with in LS-DYNA.  
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