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Abstract 
 
The electromagnetic (EM) solver module of LS-DYNA targets coupled mechanical/thermal/electromagnetic problems as they occur, for 
instance, in the simulation of metal forming, welding, and induction heating. The EM solver incorporates the coupling of  Finite Element 
and Boundary Element Methods. The main advantage of this approach is that the volume discretization of the surrounding air region is 
avoided. This approach significantly reduces the modelling time and avoids mesh entanglement due to large deformation of the 
workpiece in metal forming. 
However, the current implementation has severe limitations: Due to the algorithm’s explicit character, very small time step sizes are 
required leading to large simulation times. Moreover, the conditional stability of the current approach only allows for vacuum or 
materials with very small magnetic permeability. 
In this work we present an improved version of that EM module. The new EM module is unconditionally stable with respect to the time 
step size and allows also for the handling of materials with any permeability. 
Besides some inevitable theory the presentation will mainly focus on application examples that confirm the strength of the new EM 
module. 
 

1. Introduction 
 
Today's development cycles of electric machines, magnetic sensors, or transformers are intimately connected with 
numerical simulation. A cost-effective development and optimization of these devices is hardly viable without 
virtual prototyping. The fundamentals of electromagnetic simulations are the Maxwell's equations and one of the 
most popular and most versatile numerical discretization schemes is the Finite Element Method (FEM). While 
originally applied to problems in structural mechanics the FEM succeeded also for electromagnetic problems for 
more than 30 years. 
 
However, the simplicity of the FEM does not come for free. Since electric and magnetic fields extend into the 
unbounded exterior air region one typically introduces homogeneous boundary conditions some distance away 
from the solid parts. Then by expanding the Finite Element grid to parts of the air region an approximation for 
the unknown fields can be obtained. Thanks to the decay properties of the electromagnetic fields this approach is 
widely applied, accepted, and justified for many applications. Nevertheless, some problems remain: 

• Non-physical boundary conditions are imposed on the domain's (fictitious) boundary and the introduced 
modeling error leads to contaminated solutions. This might become critical when highly accurate 
simulation results are needed. 

• The meshing of the air region requires a considerable amount of time and effort. In many situations the 
number of elements in the air region even exceeds the number of elements used for the solid parts. 

• Electrical devices often contain moving parts. For instance, the variation of the rotor/stator positions of an 
electric motor requires either a re-meshing of the air gap or a fundamental modification of the Finite 
Element scheme. 

• The accurate computation of electro-mechanical forces with a FEM-only discretization remains a 
challenge. 

A properly designed and implemented FEM-BEM coupling scheme circumvents all of these issues: The Boundary 
Element Method handles the exterior air region while the solid parts are discretized by the Finite Element Method. 

http://www.tailsit.com/
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TAILSIT has a strong expertise in the development of numerical simulation tools in general and in Boundary 
Element Methods in particular. We have implemented a FEM-BEM coupling scheme for electromagnetics [1] 
that is largely based on theoretical work by R. Hiptmair [2]. Our FEM-BEM solver addresses very similar 
problems as the FEM-BEM EM module that is shipped with LS-DYNA. However, as it has turned out, 
LS-DYNA’s solver features some weaknesses. E.g., due to an iterative coupling scheme very small time step 
sizes are required resulting in unnecessary long computation times. In this work we present a remedy for this 
issue and present a monolithic coupling scheme that is unconditionally stable w.r.t. the time step size. In addition, 
the monolithic approach allows also for permeable materials. TAILSIT has implemented the monolithic coupling 
into LS-DYNA and – by March 2018 – proceeds with testing the new solver module. 
 
This work is organized as follows: In Sec. 2 we first recall some general ideas on how different FEM-BEM 
coupling schemes can be established. In particular, we comment on the differences between indirect and direct 
methods. LS-DYNA’s solver module is based on an indirect coupling while TAILSIT’s in-house solver utilizes a 
direct, symmetric scheme. In Sec. 3 we comment on two solution strategies for the linear block systems that are 
obtained after Galerkin discretizations of the corresponding variational formulations. We will show that 
monolithic coupling approaches combined with advanced preconditioning techniques are superior to weak 
coupling schemes since the latter schemes lack of stability. The numerical examples given in Sec. 4 will confirm 
the strength of the monolithic coupling as they present simulation results that can be hardly obtained with the 
current implementation. 
 
 

2. A short overview on various FEM-BEM coupling schemes 
 
The starting point of the derivation of FEM-BEM coupling schemes for eddy-current problems is the governing 
equation 
 
  (1) 
 
in which  denotes a prescribed current density and  is the vector potential such that  where  
denotes the magnetic flux density. The parameters  and  are the (possibly nonlinear) magnetic permeability 
and the electrical conductivity, respectively. The derivative w.r.t. time is denoted by . The governing equation 
holds for all solid parts. They define the interior region . Contrary, in the complementary exterior air region 

 the vector potential fulfills the linear, homogeneous curl-curl equation 
 
  (2) 
 
with  denoting the vacuum permeability. The variational form of Eqn (1) then reads: 
Find  such that 
  (3) 
for all test functions . 
The above equation needs some explanation. First, we adopt the notation . Further, the 
space  denotes all vector functions whose  is square integrable in . The Neumann and 
Dirichlet trace operators  and  map domain quantities to the boundary . Their definitions are 
 

  (4) 

 



15th International LS-DYNA® Users Conference Electromagnetics 

June 10-12, 2018  3 

and the superscript  denotes that the trace operation is performed either w.r.t. the interior or exterior domain. In 
pure Finite Element Methods for electromagnetic problems the traces in Eqn (3) are commonly neglected which 
is equivalent to either homogeneous Neumann or Dirichlet boundary conditions. This implies that the FEM region 
must cover also a considerable amount of the unbounded air region such that the assumption of homogeneous 
boundary conditions is justified due to the decay behavior of the magnetic fields. However, in the context of 
Boundary Element Methods the trace operators play a crucial role as they allow for a representation via boundary 
integral operators. The main idea of any FEM-BEM coupling is the following: First, exchange the interior traces 
in Eqn (3) by their exterior counterparts via suitable transmission conditions. Then, express the exterior traces by 
boundary integral operators that are related to Eqn (2). The transmission conditions for the eddy-current problem 
are 
 

  (5) 

 
Hence, Eqn (5) allows for exchanging the interior Neumann traces by the exterior Neumann traces in the 
variational form. For simplicity, we skip the superscripts from now on and postulate that all traces are meant to 
be exterior ones. 
Before we give expressions for the BEM operators we need to define the fundamental solution 
 

  (6) 

 
which solves  for all . With this we define the Maxwell single and Maxwell double layer potentials 
 

  (7) 

 
Above,  denotes the outward normal vector. Applying the trace operators to the potentials yields the following 
four boundary integral operators: 
 

  (8) 

 
 is the single layer operator,  is the double layer operator,  is the adjoint double layer operator, and  is 

the hypersingular integral operator. 
A non-symmetric, indirect coupling is now achieved by utilizing the ansatz 
 
  (9) 
 
with some unknown density function . It can be shown that the ansatz in (9) is a solution of Eqn (2) if the density 
function has vanishing surface divergence. We denote the space of functions with zero surface divergence by 

. 
Now, it remains to put the pieces together: Applying the Dirichlet trace to Eqn (9) and weighting with a test 
function  gives a variational formulation for the surface quantities , . Further, we apply 
the Neumann trace to Eqn (9) and inserting the result  into Eqn (3). This gives the final 
variational form: Find ,  such that 
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  (10) 

 
for all , . 
In Eqn (10),  abbreviates the bilinear form for the volume terms, i.e., 
 
  (11) 
 
LS-DYNA’s FEM-BEM coupling scheme is based on a proper discretization of Eqn (10). Since the occurring 
density function  has no immediate physical meaning this kind of coupling is denoted as indirect, non-symmetric 
FEM-BEM coupling. A direct, symmetric coupling is achieved if an ansatz via the so-called representation 
formula is used 
 
  (12) 
 
The equation above expresses the vector potential  by means of its own traces. Therefore, this approach is 
entitled as direct method. The formula can be interpreted as the static equivalent to the Stratton-Chu formula [4]. 
For simplicity, we have deliberately neglected an additional term that deals with the normal trace  of the 
vector potential. However, this additional term provides no additional information and is forced to drop out. This 
is done by imposing the divergence-free constraint to the unknown Neumann trace of . With the ansatz from 
Eqn (12), the deduction of the direct coupling follows the same steps as before: Applying the Dirichlet trace to 
the representation formula gives a boundary integral equation for the unknown Cauchy data ,  while the 
Neumann trace of Eqn (12) is directly incorporated into the variational form from Eqn (3). With the abbreviation 

 the final variational form is: Find ,  such that 
 

  (13) 

 
for all , . The operator  denotes the identity operator. 
Due to the property 
 
  (14) 
 
we have a skew-symmetric system which can be symmetrized such that this coupling scheme is denoted as direct, 
symmetric FEM-BEM coupling. 
Remark: The divergence-free constraints that are imposed on  and  can be realized via surface curls of some 
scalar fields. The definition of the surface curl is  with  being the 
surface gradient. Then, the ansatz  fulfills the divergence-free constrained due to . 
However, this approach is not sufficient if one deals with non-simply connected domains. In this case the ansatz 
has to be augmented by additional surface stream functions. We do not comment further on this issue since these 
are merely technical details. See [2], [5] for further details. 
The Galerkin discretization of the variational forms (10), (13) is straightforward. Using Nedelec elements [6], [7] 
for the discretization of the FEM operators and RWG elements [8] together with classical piecewise linear 
functions (e.g. [9]) for the BEM operators gives the block systems 
 

  (15) 
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for the indirect method and 
 

  (16) 

 
for the direct method, respectively. We will comment on the linear systems above in some detail: First of all,  
denotes the time derivative of the vector . Further, the matrices , and  represent the discretized FEM 
bilinear forms. The matrices , , and  stem from the discretization of the boundary integral operators.  and 

 represent the discrete single layer and hypersingular operators, respectively. The discrete double layer operator 
is given by the matrix  and we abbreviate  with  representing the jump term across the boundary 
interfaces. The same matrix  occurs in the lower left block of the indirect system (15). The matrix  
filters the boundary coefficients of the vector , representing the degrees of freedom of the vector potential . 
The matrix  realizes the divergence-free constraints. As mentioned before both surface unknowns  and , are 
taken from the space . Because of  these functions can be represented as the surface 
curls of scalar potentials represented by the vectors  and . 

 
 

3. Solution strategies 
 
A backward Euler scheme can be used for the time discretization of the systems (15), (16). If higher order schemes 
are desired, we recommend Rosenbrock-Wanner methods [10] in general, and [11] in particular. These schemes 
reduce the computational costs compared to Runge-Kutta methods considerably. 
However, independent of the time integration scheme one is faced with the solution of a two-by-two block system 
of the form 
 

  (17) 

 
Currently, LS-DYNA solves such a system via a Gauss-Seidel iteration scheme (see [12], Ch. 3.6). The 
corresponding fixed point iteration reads (see [13], Ch. 11.2) 
 

  (18) 

 
The advantage of using this scheme is due to the fact that separate linear solvers for the FEM and BEM system 
are used. This becomes obvious from the inverse for  
 
 
 
 

  (19) 

 
Unfortunately, the convergence of this method depends solely on the iteration matrix . Let  denote the error 
in the n-th iteration. We then have 
 
  (20) 
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We refer to [13] for a proof of the above statement. From Eqn (20) it follows that convergence is only guaranteed 
if the spectral radius of the iteration matrix is less or equal one. Within LS-DYNA, this condition is achieved by 
imposing a CFL-like condition (see [12], Ch. 3.6) 
 
  (21) 

 
with  being the grid’s mesh size. As a consequence, the iterative scheme (18) requires very small time step sizes 
and therefore renders the overall scheme computationally inefficient. 
To overcome the restriction posed by Eqn (21) we propose a monolithic coupling for systems like (17). Due to 
the sheer dimension of the BEM matrices direct solvers are excluded a priori. Contrary, the rate of convergence 
of iterative solvers based on Krylov subspace methods depends on the conditioning of the system matrix. 
Therefore, the use of suitable preconditioners is often inevitable. Here, we use a block preconditioner of the form 
 

  (22) 

 
LS-DYNA always guarantees  such that the FEM preconditioner  is based on a LU factorization of 
the FEM matrix.  The preconditioner   for the BEM block is simply based on diagonal preconditioning. This 
preconditioning strategy has been implemented in LS-DYNA and is currently (as of March, 2018) been tested. 
However, the direct approach for the FEM preconditioner restricts the solver to rather medium sized problems 
and the diagonal preconditioning for the BEM block is not optimal either. Further, for zero-conductivity regions 
a factorization of the FEM matrix becomes impossible due to the large kernel of the curl-curl operator. As an 
alternative we propose a FEM preconditioner that is based on algebraic multigrid methods in conjunction with 
auxiliary space methods [14]. In addition, an efficient preconditioner for the BEM system is constructed using 
operator preconditioning techniques [15]. For a deeper analysis of optimal preconditioners we refer to [2]. Here, 
it suffices to note that the numerical examples provided in the upcoming section are done with TAILSIT’s in-
house solver which is based on the two last named preconditioning strategies. 
Once the block preconditioner is established we use a GMRES solver [16] for the indirect, non-symmetric system 
and a MINRES solver [17] for the direct, symmetric coupling. 
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4. Numerical examples 

 
First, we verify the two proposed FEM-BEM coupling schemes by means of an academic example. For this we 
consider the purely magnetostatic problem of a uniformly magnetized sphere of radius . The constant 
magnetization is given by , . An analytical solution for this problem can be found in Ch. 
5.10 of [18]. We define the relative error as 
 

  (23) 

  
where  denotes the analytic magnetic flux density and  is the magnetic flux density computed by the FEM-
BEM coupling scheme. 
 

Level N(tet) N(tria) h(tet) h(tria) 
1 32 32 7.22E-01 6.18E-01 
2 368 212 4.69E-01 3.16E-01 
3 2,035 710 3.57E-01 1.92E-01 
4 11,295 2,318 1.86E-01 9.50E-02 
5 76,891 9,006 9.50E-02 5.20E-02 
6 534,390 35,158 5.80E-02 2.70E-02 

Table 1: Volume and surface grid specifications. 
The FEM grid consists of curved tetrahedral elements. The grid specifications are given in Tab 1. 
The Fig 1 plots the relative errors for various relative permeabilities  against the mesh size of the FEM grid. 
Obviously, the method works and the convergence behavior is independent of the magnetic permeability. 
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Next, we investigate the efficiency of the preconditioning by means of the iterations that are needed to reduce the 
residual by five orders of magnitude. The Tab 2 & 3 depict the iteration numbers  for various relative 
permeabilities . While Tab 2 shows the iteration numbers for the direct, symmetric FEM-BEM 
coupling, the Tab 3 depicts the results that are obtained with the indirect scheme in combination with the diagonal 
preconditioning of the BEM blocks. The increasing iteration numbers for the indirect scheme are mainly due to 
the non-optimal BEM preconditioning strategy. Keeping the iteration numbers as low as possible is an important 
goal – especially since the Boundary Element operators are tackled by a multilevel fast multipole method [19] 
which realizes a fast matrix-vector multiplication. However, this multiplication is still slower than a matrix-vector 
product with truly sparse matrices. 
 

Level It(1) It(10) It(100) It(1000) It(10000) 

2 9 16 21 22 22 
3 10 18 24 24 24 
4 11 19 25 25 25 
5 12 24 29 30 30 
6 16 29 35 36 36 

Table 2: Direct, symmetric coupling. AMG/AMS FEM preconditioner. BEM preconditioner based on operator 
preconditioning. Iteration numbers for various permeabilities. 

 
Figure 1: Convergence study. Uniformly magnetized sphere. Direct coupling. MINRES rel. tol. 1E-5 
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Level It(1) It(10) It(100) It(1000) It(10000) 

2 17 25 49 81 96 
3 22 29 45 57 87 
4 30 42 53 66 55 
5 49 55 73 82 81 
6 66 70 94 101 99 

Table 3: Indirect, non-symmetric coupling. AMG/AMS FEM preconditioner. BEM preconditioner based on 
diagonal scaling. Iteration numbers for various permeabilities. 
 
The next example depicts the results for an Asymmetrical conductor with a Hole (TEAM7, 
http://www.compumag.org/jsite/team.html). Without going into details, the presented FEM-BEM coupling can be 
formulated also in frequency domain. Fig. 2 shows a contour plot of the real part of the magnetic flux density 
together with the coil’s excitation current and the induced eddy-currents in the plate at a prescribed frequency of 
200Hz. Moreover, Fig 3 compares the computed eddy-currents against the measured eddy-currents along a 
predefined line. Clearly, the computed results are in good accordance with the measurement data. 
 
The final example deals with a classical physical experiment that illustrates the effect of Lenz’s law. We consider 
a magnet falling through a copper pipe.  Once the magnet falls through the pipe the direction of the current induced 
by the changing magnetic field is such that it creates a magnetic field which opposes the change that produced it. 
The model’s parameter are stated in [20]. The FEM-BEM coupling’s time integration scheme is based on a 
Rosenbrock-Wanner method. The time step size is . As for the TEAM7 example, the simulation is in 
congruence with the measurement data. In Fig. 4 three snapshots are given that show the falling magnet at times 
0.06s, 0.125s, and 0.85s, respectively (additionally, an animated gif is available at http://tailsit.com/lenz/lenz.gif). 
In this example the benefits of the FEM-BEM coupling really pay off since we deal with a model that consists of 
moving parts. Moreover, a simulation purely taken out with a Finite Element Method is very involved due to the 
crucial demand for sophisticated re-meshing facilities. 
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Figure 2: Magnitude of Re(B) with applied current (black) and induced current (red) for 200Hz 

 
Figure 3: Comparison of induced currents for the frequencies 50Hz and 200Hz along the line 0<x<288mm, 
y=72mm, z=19mm 
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Figure 4: Magnet falling through a copper pipe. 



15th International LS-DYNA® Users Conference Electromagnetics 

June 10-12, 2018  12 

 
References 

 
[1] L. Kielhorn, T. Rüberg, and J. Zechner, “Simulation of electrical machines: a FEM-BEM coupling scheme,” COMPEL - Int. J. 

Comput. Math. Electr. Electron. Eng., vol. 36, no. 5, pp. 1540–1551, Sep. 2017. 
[2] R. Hiptmair, “Symmetric Coupling for Eddy Current Problems,” SIAM J. Numer. Anal., vol. 40, no. 1, pp. 41–65, Jan. 2002. 
[3] G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, vol. 164. Berlin, Heidelberg: Springer Berlin Heidelberg, 

2008. 
[4] J. A. Stratton and L. J. Chu, “Diffraction Theory of Electromagnetic Waves,” Phys. Rev., vol. 56, no. 1, pp. 99–107, Jul. 1939. 
[5] R. Hiptmair and J. Ostrowski, “Generators of $H_1(\Gamma_{h},\mathbbZ)$ for Triangulated Surfaces: Construction and 

Classification,” SIAM J. Comput., vol. 31, no. 5, pp. 1405–1423, Jan. 2002. 
[6] J. C. Nedelec, “Mixed finite elements in R3,” Numer. Math., vol. 35, no. 3, pp. 315–341, Sep. 1980. 
[7] M. Bergot and M. Duruflé, “High-order optimal edge elements for pyramids, prisms and hexahedra,” J. Comput. Phys., vol. 

232, no. 1, pp. 189–213, Jan. 2013. 
[8] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag., 

vol. 30, no. 3, pp. 409–418, May 1982. 
[9] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, vol. 159. New York, NY: Springer New York, 2004. 
[10] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, vol. 14. Berlin, Heidelberg: Springer Berlin Heidelberg, 

1996. 
[11] D. Lanser, J. G. Blom, and J. G. Verwer, “Time Integration of the Shallow Water Equations in Spherical Geometry,” J. 

Comput. Phys., vol. 171, no. 1, pp. 373–393, Jul. 2001. 
[12] “EM THEORY MANUAL - Electromagnetism and Linear Algebra in LS-DYNA.” Aug-2012. 
[13] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU Press, 2012. 
[14] R. Hiptmair and J. Xu, “Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces,” SIAM J. Numer. Anal., vol. 45, 

no. 6, pp. 2483–2509, Jan. 2007. 
[15] O. Steinbach and W. L. Wendland, “The construction of some efficient preconditioners in the boundary element method,” Adv. 

Comput. Math., vol. 9, no. 1/2, pp. 191–216, 1998. 
[16] Y. Saad and M. H. Schultz, “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear 

Systems,” SIAM J. Sci. Stat. Comput., vol. 7, no. 3, pp. 856–869, Jul. 1986. 
[17] C. C. Paige and M. A. Saunders, “Solution of Sparse Indefinite Systems of Linear Equations,” SIAM J. Numer. Anal., vol. 12, 

no. 4, pp. 617–629, Sep. 1975. 
[18] J. D. Jackson, Classical Electrodynamics, 3rd ed. John Wiley & Sons, Inc., 1999. 
[19] L. Greengard and V. Rokhlin, “A new version of the Fast Multipole Method for the Laplace equation in three dimensions,” 

Acta Numer., vol. 6, p. 229, Jan. 1997. 
[20] Y. Levin, F. L. da Silveira, and F. B. Rizzato, “Electromagnetic braking: a simple quantitative model,” Mar. 2006. 


	Robust FEM-BEM Coupling for LS-DYNA®'s EM module
	Abstract
	1. Introduction
	References

