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Abstract 
 
The zero thickness cohesive element approach for arbitrary crack propagation has a deficiency of introducing artificial compliance to 
the model, especially when cohesive elements are inserted into every element interfaces. For dynamic problems, the artificial 
compliance decreases the stress wave speed and makes the result less accurate.  In this paper, the reason of the artificial compliance 
is examined, and the bilinear and exponential cohesive law are compared.  The work shows that by choosing the right cohesive 
stiffness, element size and using bilinear cohesive law rather than exponential cohesive law, the artificial compliance issue can be 
limited to a negligible level without greatly increasing the computational time. Two numerical simulations are used to support the 
argument. According to our finding, in order to limit the artificial compliance and computational time, large element size is 
recommended. However, in fracture problems, small element size around crack tip is essential to capture the cohesive zone behavior. 
To escape the dilemma, we modify the cohesive zone enlargement approach presented in the literature [1] and adopt it for arbitrary 
crack propagation. The modified methodology enlarges the cohesive zone size by reducing the cohesive strength only around crack 
tips to allow more cohesive elements inside the cohesive zone. Two benchmark numerical simulations are carried out to verify the 
modified methodology.   
 
 

1. Introduction 
 
The concept of cohesive zone model was proposed by Dugdale (1960) [1] and Barenblatt (1962) [2]. The idea is 
to treat the process zone as a cohesive zone where there exists traction between two virtual surfaces ahead of the 
crack tip, whose behavior is governed by a traction-separation law, as shown in Figure 1.  

 
Figure 1. Cohesive zone at crack tip and cohesive law 

Since cohesive zone model was proposed, it has been widely used in fracture problems especially crack 
propagation problems. It shows a much easier way to simulate crack propagation as no complicated failure 
criteria and topologies, but only the information of cohesive zone model is needed. It is very convenient and 
straightforward when the crack path is known ahead, so cohesive elements are only needed in that region, like 
composite delamination problems [3-5], crack propagation in beam bending problems [6,7] and fracture/fatigue 
in adhesive joints [8]. Zero thickness cohesive elements can also be inserted into every element interface to 
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allow arbitrary crack propagation. In 1994 Xu and Needleman [9] first used this approach to predict dynamic 
crack propagation.  
At the same time, there are issues pertinent with the zero-thickness cohesive element approach. Researchers 
[10-13] have pointed out this zero-thickness cohesive element approach introduces artificial compliance to the 
model and could greatly alter the dynamic response when cohesive elements are applied at every element 
interface. There are several methods available to get rid of that extra compliance. The most straightforward one 
is to increase the initial stiffness of the cohesive model. That, however, is criticized for resulting in a big 
increase in computational time as time step is controlled by the elastic modulus of material [14]. Besides 
increasing the cohesive zone stiffness, an alternative approach was proposed by Camacho (1996) [14]. He used 
an initially rigid cohesive model and combined it with an element insertion topology to only add zero thickness 
cohesive elements at regions where a certain failure criterion is met. However, the insertion of cohesive 
elements requires complex topology and data structure for parallel computing and becomes unattractive for 
large-scale 3D problems [15]. Another way is to use hybrid discontinuous Galerkin/cohesive zone model 
method, in which discontinuous Galerkin formulation is used to eliminate jumps between element boundaries 
before failure [16,17]. 
Apart from initial stiffness in cohesive element, element size is also a factor that influences the artificial 
compliance. Klein (2001) used a 1-D model to illustrate that the artificial compliance is inversely proportional 
to the element size [11]. Furthermore, Blal (2012) [18,19] used a micro-mechanical model and homogenization 
technique to derive a function relating initial stiffness and element size to artificial compliance in 3D problems. 
His conclusion also suggests element size is inversely proportional to artificial compliance. Therefore, 
theoretically, we can choose big element sizes to limit the reduction of stiffness issue. Nevertheless, Tomar 
(2004) [20] pointed out there should be an upper bound for cohesive element size as well to guarantee enough 
number of cohesive elements inside the cohesive zone. This criterion is commonly adopted in the literature 
[10,21].  
Turon (2006) [22] used a cohesive zone enlargement approach to increase the cohesive zone length by scaling 
down the cohesive strength, thus allowing big element sizes to be used. This methodology was proved to work 
well in delamination problem: the force-displacement results match well with small mesh cases, despite a small 
drop in the peak force, and that decrease is acceptable compared to the computational efficiency it brought. 
Harper (2008) [21] did study on both mode I and mode II delamination, and found increasing the cohesive zone 
length by reducing the cohesive strength will make the force-displacement curve smoother. Although it will 
produce a loss of stiffness in the elastic loading regime, it is relatively small magnitude if the reduce of cohesive 
strength is within a reasonable range. Z Shabir (2011) [23] tested the cohesive zone enlargement approach at 
intergranular level using Generalized Finite Element Method (GFEM). He found reducing the cohesive strength 
does not influence the crack path and force displacement curve. To the best of our knowledge, this method 
hasn’t been used on arbitrary crack propagation problems, and that will be studied in this paper.  
In this paper, the focus is on initially un-rigid cohesive element approach. It can be easily implemented into 
existing commercial FE code and doesn’t need extra mesh topology and changes in shape function. We argue 
that by using the bilinear cohesive law, carefully choosing the initial stiffness, and guaranteeing no extra mass is 
introduced, the artificial compliance and wave speed change can be limited within a negligible range and the 
increase of the simulation time is also affordable. Moreover, cohesive zone enlargement approach is adopted in 
arbitrary crack propagation to allow the use of relatively coarse mesh.   
The paper is structured in the following way: in Section 2, a study of the relationship between cohesive 
stiffness, element size and artificial compliance is carried out; two numerical simulations are presented to 
demonstrate that if choosing the cohesive stiffness and element size to be in the right range, the artificial 
compliance and the change of dynamic wave speed is negligible. Based on the result of Section 2, a comparison 
of the bilinear law and exponential law is given in Section 3 in terms of their initial stiffness. To make coarse 
element usable in arbitrary crack propagation problem, we modified the cohesive zone enlargement approach 
and programmed it into LS-DYNA’s user subroutine in Section 4. Two benchmark studies are presented in 
Section 5 to verify the modified cohesive zone enlargement approach. 
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2. Zero thickness cohesive elements and wave speed 

 
Regarding the artificial compliance issue with zero-thickness cohesive elements, it seems the only way to 
compensate it in the framework of cohesive element approach is to use high elastics modulus in the cohesive 
element. In 2001, Klein [11] used a 1D example (Figure 2) to illustrate the relationship between cohesive 
element stiffness and effective elastic modulus:  

 𝐸𝐸eff = 𝐸𝐸 �1 −
1

1 + (𝐾𝐾ℎ/𝐸𝐸)
� (1) 

where ℎ is solid element length, 𝐾𝐾 is the stiffness of cohesive element, 𝐸𝐸 is the elastics modulus of solid 
element and 𝐸𝐸eff is the effective modulus of the whole model.  

 
Figure 2. Illustration of artificial compliance in 1D [24] 

From Equation (1), it can be observed that increasing the cohesive stiffness and element size would make 
effective modulus closer to solid element elastic modulus. In 2013, Blal [19] used a micromechanical model and 
a homogenization technique to estimate the relationship between cohesive stiffness, element size and effective 
elastic modulus (Equation (2~3)): 

 
𝐸𝐸eff
𝐸𝐸

=
𝜉𝜉

1 + 𝜉𝜉
  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜉𝜉 =

5
1 + (4 3⁄ )(𝐾𝐾𝑛𝑛 𝐾𝐾𝑡𝑡⁄ ) ×

𝐾𝐾𝑛𝑛
𝐸𝐸𝐸𝐸

 (2) 

 
𝑣𝑣eff
𝑣𝑣

=
15𝐾𝐾𝑛𝑛𝑣𝑣 + (2𝐾𝐾𝑛𝑛 𝐾𝐾𝑡𝑡⁄ − 1)𝐸𝐸𝐸𝐸

1515𝐾𝐾𝑛𝑛𝑣𝑣 + (4𝐾𝐾𝑛𝑛 𝐾𝐾𝑡𝑡⁄ + 3)𝐸𝐸𝐸𝐸𝑣𝑣
 (3) 

where 𝐴𝐴 is the total element surface area, 𝑉𝑉 is the total volume of the meshed body, 𝐸𝐸 is a value based on mesh 
type, and 𝐾𝐾𝑛𝑛, 𝐾𝐾𝑡𝑡 are the initial normal and tangential stiffness in cohesive law respectivley. Taking 𝐸𝐸 = 6 for 
structured tet mesh, as suggested in [19], we can plot 𝐾𝐾𝑛𝑛 𝐸𝐸⁄  vs. 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸⁄  curve (Figure 3). It can be observed 
from Figure 3 that to make the overall elastic modulus 95% of the original elastic modulus, the cohesive 
stiffness needs to be about 30 times of the elastic modulus. To meet that requirement bilinear cohesive law 
instead of exponential cohesive law should be used, and the reason will be explained in Section 3. In dynamic 
problem, attention has to be paid not only to initial stiffness, but also to the mass of cohesive elements. It must 
be guaranteed that no extra mass is introduced by cohesive elements.  

 
Figure 3. Cohesive stiffness vs. effective elastic modulus using Blal’s micromechanics model [19] 
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2.1. Influence of cohesive elements on the compressive stress wave speed 

in a 3D bar model 
 
To test the theory in 3D cases, we simulated wave propagation in a steel bar using commercial FE code 
LS-DYNA. The dimension of the steel bar is shown in Figure 4. The bar is loaded at one end by a step load and 
fixed at the other end. The stress wave at the fixed end is obtained, and wave speed is calculated. A bilinear 
cohesive law is used so that arbitrary initial stiffness can be chosen. The amplitude of the step load is small 
enough, so the traction and separation remain in the ascending part of cohesive law during the whole process. 
The effective elastic modulus of the bar with cohesive elements is also obtained by a quasi-static loading.  
Figure 5(a) shows the relationship between effective elastic modulus and cohesive stiffness, with element size 
equals 2𝑚𝑚𝑚𝑚. Figure 5(b) shows the relationship between effective elastic modulus and element size in 
longitudinal direction and 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 10. This agrees with the results in 1D model.  

 
Figure 4. A 3D steel bar model under a step load 

 
(a)  (b) 

Figure 5. (a) Cohesvie stiffness vs 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 , (b) Element size vs. 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒  

In wave propagation simulation, 2mm mesh size is used. The stress wave history of case 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 20 is 
compared to a case without cohesive element (Figure 6). For a 2mm mesh size, 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 20 would give an 
effective elastic modulus 98% of solid the elastic modulus.  𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 10 and 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 50 are also used for 
comparison (Figure 7). The wave speed for each case is also computed and summarized in Table 1. It can be 
observed from Figure 6~7 and Table 1 that for 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 20 the compressive stress wave speed is around 2% of 
error. For 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 50, there is a 85.3% of reduction in time step, which corresponds to a 5.5 times of increase in 
the computing time. 
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Table 1. Wave speed and time step reduction for different cohesive stiffness when mesh size is 2mm 

 No cohesive 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 10 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 20 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 50 

Wave speed (m/s) 5167 5000 5153 5164 

Error (%) -- 3.18 2.07 0.23 

Time step (dt) 1.13e-4 3.71e-5 2.62e-5 1.66e-5 

dt reduction (%) -- 67.2 76.8 85.3 

 

 
Figure 6. Compressive stress wave history at the fixed end of the 3D bar 

 
Figure 7. Compressive stress wave history at the fixed end of the 3D bar for different cohesive stiffness 

  

2.2. Influence of cohesive elements on the shear stress wave speed in a 3D plate model 
 
This simulation will investigate the shear wave speed in a plane with cohesive elements at every element 
interface. In this simulation, a plate with size 100𝑚𝑚𝑚𝑚 × 100𝑚𝑚𝑚𝑚 × 1𝑚𝑚𝑚𝑚 is modelled using solid elements 
(Figure 8). The plate is fixed at three edges and loaded at the free edge under a constant force loaded at a width 
of 4𝑚𝑚𝑚𝑚. The plate is modelled with 1𝑚𝑚𝑚𝑚 mesh size. Aluminum 2024 T3 is used; it has an elastic modulus  
𝐸𝐸 = 72𝐺𝐺𝐺𝐺𝐺𝐺, shear modulus 𝐺𝐺 = 28𝑀𝑀𝐺𝐺𝐺𝐺, Poisson’s ratio 𝑣𝑣 = 0.3 and density 𝜌𝜌 = 0.27𝑔𝑔/𝑐𝑐𝑚𝑚3. The shear 
stress history at a point 25𝑚𝑚𝑚𝑚 × 25𝑚𝑚𝑚𝑚 from the left down corner is extracted and plotted for different 
cohesive zone initial stiffness. The same cohesive initial stiffness is used for both normal and tangential 
direction. The shear stress history is plotted in Figure 9~10 and the time step reduction is summarized in Table 
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2. The wave speed reduction is negligible (0.4%) when 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 50, and the time step is reduced 85%, which 
corresponds to a 5.5 times of increase in the simulation time.  

 
Figure 8. Illustration of the plate model (units: mm) 

 
Figure 9. Shear Stress wave history at a fixed point on the plate 

 
Figure 10. Shear Stress wave history at a fixed point on the plate for different cohesive initial stiffness 
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Table 2. Shear wave speed and time step reduction for different cohesive stiffness 

 No cohesive 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 10 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 20 𝐾𝐾𝑛𝑛 𝐸𝐸⁄ = 50 

Wave speed (m/s) 6799 6347 6559 6772 

Error (%) -- 6.65 3.53 0.39 

Time step (dt) 1.13e-4 3.71e-5 2.74e-5 1.73e-5 

dt reduction (%) -- 67.2 75.8 84.7 

Based on the above two simulations, we can prove that by properly choosing the cohesive stiffness and element 
size, the artificial compliance can be limited within negligible range.  Also, there are some observations that can 
serve as a guideline for future modeling: 

1) Avoid using extremely small element size. 
2) The cohesive initial stiffness does not need to be extremely high because once it reaches a certain value 

(98% in this case), a further increase in cohesive stiffness would only reducing the time step without 
increasing effective elastic modulus much. 

 
3. Bilinear cohesive vs. exponential cohesive law on their initial stiffness 

 
Based on the result of Section 2, the initial stiffness of cohesive element needs to be in the right range to reduce 
the artificial compliance to a negligible range, and that requires the cohesive law to have a high slope in the 
ascending part. In this section, we argue that unlike bilinear cohesive law, exponential cohesive fails to meet 
this requirement for many materials. Many authors who pointed out huge artificial compliance were using 
exponential cohesive law [10,25-27].  
The initial stiffness of bilinear cohesive law is quite straightforward; it can be taken any value as long as the 
separation condition is satisfied: the corresponding separation at maximum traction should be smaller than the 
largest separation in the cohesive model, which is determined by Equation (4): 

 𝛿𝛿𝑛𝑛 =
2𝐺𝐺𝐼𝐼𝐼𝐼
𝑇𝑇

, 𝛿𝛿𝑡𝑡 =
2𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼
𝑆𝑆

 (4) 

where 𝛿𝛿𝑛𝑛 and 𝛿𝛿𝑡𝑡 are the maximum separation in normal and tangential direction; 𝐺𝐺𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 are the critical 
energy release rate in mode I and mode II respectively and  𝑇𝑇, 𝑆𝑆 corresponds to the cohesive strength in normal 
and shear direction.  
For the exponential law, we use the modified Xu-Needleman’s cohesive law [28] as an example. The traction in 
normal and tangential directions are shown as follows: 

 𝑇𝑇𝑛𝑛 =
𝐺𝐺𝐼𝐼𝐼𝐼
𝛿𝛿𝑛𝑛

�
∆𝑛𝑛
𝛿𝛿𝑛𝑛
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

∆𝑛𝑛
𝛿𝛿𝑛𝑛
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

∆𝑡𝑡2

𝛿𝛿𝑡𝑡2
� (5) 

 𝑇𝑇𝑡𝑡 = 2
𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼
𝛿𝛿𝑡𝑡

�
∆𝑡𝑡
𝛿𝛿𝑡𝑡
� �1 +

∆𝑛𝑛
𝛿𝛿𝑛𝑛
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

∆𝑛𝑛
𝛿𝛿𝑛𝑛
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

∆𝑡𝑡2

𝛿𝛿𝑡𝑡2
� (6) 

where 𝛿𝛿𝑛𝑛 = 𝐺𝐺𝐼𝐼𝐼𝐼/(𝑒𝑒𝑇𝑇), and 𝛿𝛿𝑡𝑡 = 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼/�𝑆𝑆�𝑒𝑒/2�. The initial stiffness in normal and tangential direction are  
𝐾𝐾𝑛𝑛 = 𝐺𝐺𝐼𝐼𝐼𝐼 𝛿𝛿𝑛𝑛2⁄  and 𝐾𝐾𝑡𝑡 = 2𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 𝛿𝛿𝑡𝑡2⁄  respectively. Replacing 𝛿𝛿𝑛𝑛 and 𝛿𝛿𝑡𝑡 by expressions of normal and tangential 
strength, the initial stiffness can be rewritten as:  

 𝐾𝐾𝑛𝑛 =
𝑒𝑒2𝑇𝑇2

𝐺𝐺𝐼𝐼𝐼𝐼
,𝐾𝐾𝑡𝑡 =

𝑒𝑒𝑆𝑆2

𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼
 (7) 

Thus the initial stiffness is determined by critical energy release rate and cohesive strength, so it is a constant 
value that only relates to material properties. This value varies for different materials and for many materials it 
is not much higher, or even lower, than the elastic modulus. To illustrate how exponential cohesive law can 
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introduce artificial compliance, the initial stiffness of several materials are calculated and summarized in Table 
3.  

Table 3. Initial stiffness in exponential cohesive law for different materials 

Material 𝐺𝐺𝐼𝐼𝐼𝐼  (𝑀𝑀𝐺𝐺𝐺𝐺 ∙ 𝑚𝑚𝑚𝑚) 𝑓𝑓𝑡𝑡  (𝑀𝑀𝐺𝐺𝐺𝐺) 𝐾𝐾𝑛𝑛(𝐺𝐺𝐺𝐺𝐺𝐺) 𝐸𝐸(𝐺𝐺𝑒𝑒𝐺𝐺) 𝐾𝐾𝑛𝑛 𝐸𝐸⁄  

Concrete  [29] 0.08 3 0.831 31.4 0.0265 

PMMA [30] 0.5 48 34.0 1.80 18.9 

Steel AISI 4340 [31] 12.5 745 328 200 1.64 

Aluminum 2024 T3 [32] 8.55 483 202 73.1 2.76 

For the four materials listed above, none of them has an initial cohesive stiffness higher than 20 times of elastic 
modulus, which is the value that corresponds to 𝐸𝐸eff = 98%𝐸𝐸 in our 3D steel bar model. For concrete, the 
initial stiffness in exponential cohesive law is even smaller than its elastic modulus. As a result, exponential 
cohesive law would introduce large artificial compliance if zero thickness cohesive elements are used between 
every element. However, in cases where only one or a few layers of cohesive elements are used, and 
exponential cohesive law can still be used. 
 

4. Cohesive zone enlargement approach 
 
Tomar (2007) [33] pointed out that it is necessary to keep the cohesive element small enough, so there are 
enough elements inside the cohesive zone to capture its behavior. The cohesive zone length is a function of 
elastic modulus, maximum traction, and surface energy, and it has been estimated by many authors [34,35]. 
Take Rice’s estimation as an example [35]: 

 𝑙𝑙𝑐𝑐 =
9𝜋𝜋
32

𝐸𝐸𝐺𝐺𝐼𝐼𝐼𝐼
𝜎𝜎𝑡𝑡2

 (8) 

The minimum number of cohesive elements that should be in the cohesive zone is not a universally agreed issue 
in the literature.  Falk (2004) [10] suggested more than five cohesive elements inside the cohesive zone to 
capture the crack tip behavior.  Harper (2008) [21] suggested more than three elements in delamination 
problems. Assuming three elements need to be in the cohesive zone, the corresponding element size for 
different materials are calculated and summarized in Table 4. 

Table 4. Cohesive zone length for different materials 

Material 𝐺𝐺𝐼𝐼𝐼𝐼  (𝑀𝑀𝐺𝐺𝐺𝐺 ∙ 𝑚𝑚𝑚𝑚) 𝑓𝑓𝑡𝑡  (𝑀𝑀𝐺𝐺𝐺𝐺) 𝐸𝐸(𝐺𝐺𝑒𝑒𝐺𝐺) 𝑙𝑙𝑐𝑐(𝑚𝑚𝑚𝑚) Element size (mm) 

Concrete  [29] 0.08 3 31.4 246 82.1 

PMMA [30] 0.5 48 1.80 0.345 0.115 

Steel AISI 4340 [31] 12.5 745 200 3.98 1.33 

Aluminum 2024 T3 [32] 8.55 483 73.1 2.37 0.789 

As shown in Table 4, except for concrete, all other materials need very small cohesive element size required to 
capture the crack tip behavior, and using such small element size would not only increase the artificial 
compliance but also increase the computational cost.  
Turon’s cohesive zone length enlargement approach is adopted and modified in this paper so relieve the 
cohesive zone size restraint [33]. Its idea is to enlarge the cohesive zone length by decreasing the maximum 
traction in the cohesive model. In this way, larger mesh size is allowed, and the cohesive zone behavior can still 
be captured. Modified cohesive strength near crack tip can be obtained by equating the cohesive zone length to 
cohesive element length multiplies the number of elements inside the cohesive zone: 



15th International LS-DYNA® Users Conference Constitutive Modeling 

June 10-12, 2018  9 

 𝑇𝑇 = �
9𝜋𝜋𝐸𝐸𝐺𝐺𝐼𝐼𝑐𝑐

32𝑙𝑙𝑐𝑐
= �

9𝜋𝜋𝐸𝐸𝐺𝐺𝐼𝐼𝑐𝑐
32𝑁𝑁𝑒𝑒𝑙𝑙𝑒𝑒

 (9) 

where 𝑁𝑁𝑒𝑒 is the number of cohesive elements inside the cohesive zone, and 𝑙𝑙𝑒𝑒 is the cohesive element length. In 
Equation (9) the number of cohesive elements inside the cohesive zone is taken as an input.   
A topology is developed that reduces the cohesive strength only near the crack tip, so that it can be applied to 
arbitrary crack propagation without changing the global behavior. For each time step, the newly failed cohesive 
elements are taken as a crack tip, and their coordinate information is stored. The distance from other cohesive 
elements to crack tip is calculated, and if it falls within a range, the cohesive strength of these elements would 
be decreased to enlarge the cohesive zone. This algorithm is programmed into the bilinear cohesive law in a 
user-defined material subroutine in LS-DYNA. Two benchmark studies are presented in next section to prove 
the feasibility of the modified cohesive zone enlargement approach.  
 

5. Benchmark study 
 

5.1. Benchmark study Kolthoff plate impact problem 
 
Kolthoff plate impact problem has been used by many people for crack propagation verification [36,37].  A 
plate with two symmetric initial cracks is impacted by a projectile at initial speed of 𝑉𝑉0 = 20𝑚𝑚/𝑠𝑠 to make the 
plate have brittle failure. Due to the symmetry of the plate and boundary condition, only half of the plate is 
modelled. A schematic illustration of the specimen is shown in Figure 11. The material property of the plate is 
𝐸𝐸 = 190𝐺𝐺𝐺𝐺𝐺𝐺, 𝑣𝑣 = 0.3 and 𝜌𝜌 = 8000𝑘𝑘𝑔𝑔/𝑚𝑚3. 𝐾𝐾𝐼𝐼 = 68𝑀𝑀𝐺𝐺𝐺𝐺√𝑚𝑚 is used in cohesive model [36]. Three mesh 
sizes (1mm, 2mm, and 3mm) are used to study how cohesive zone enlargement approach allows the use of 
relatively coarse mesh. Based on the study in Section 2, cohesive stiffness is taken as 50 times of the elastic 
modulus, which should keep the effective elastic modulus larger than 98% of E.  
Figure 12~13 show the crack shape for all the mesh cases with and without cohesive zone enlargement 
approach. For cases with cohesive zone enlargement method, the number of elements in the cohesive zone is 6, 
3 and 2 for mesh size 1mm, 2mm, and 3mm respectively. The cohesive strength near crack tip is reduced to 
increase the cohesive zone length. As a result, it helps improve the crack shape in the 3mm mesh size case, and 
the inclined angle from horizontal line is close to 70° obtained from experiment [36], as shown in Figure 14. 
Crack propagation speed is calculated using Equation (10) and is plotted in Figure 15. The average crack 
propagation speed is around 2000𝑚𝑚/𝑠𝑠, which agrees well with the result in [38]. Enlarging cohesive zone 
length does not have a distinguishable influence on the wave speed. The crack propagation history for 2mm 
mesh size case is plotted in Figure 16, and it agrees well with the results of Extended Finite Element Method 
(XFEM) and peridynamic result [30,37].  

 𝑉𝑉 =
𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖

 (10) 

 
Figure 11. Illustration of Kalthoff experiment 
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(a) Mesh size 3mm (b) Mesh size 2mm (c) Mesh size 1mm 

Figure 12 . Crack shape for all the mesh cases with cohesive zone enlargement approach 

 
(a) Mesh size 3mm (b) Mesh size 2mm (c) Mesh size 1mm 

Figure 13. Crack shape for all the mesh cases without cohesive zone enlargement approach 

 
Figure 14. Comparison between crack shape of 3mm mesh case with and without cohesive zone enlargement method   
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(a) Without cohesive zone enlargement 

 
(b) With cohesive zone length enlargement 

Figure 15. Wave speed for cases with and without cohesive zone length enlargement 

 
(a) time=40μs (b)  time=60μs (c) time=85μs 

Figure 16. Crack propagation history for mesh size 2mm model with cohesive zone enlargement approach 

 
5.2. Dynamic crack branching 

 
This benchmark test involves dynamic crack branching in a pre-notched glass plate. This example has been 
applied in many papers [30,38,39] to verify the ability of a method to predict dynamic crack branching, such as 
Element Free Galerkin (EFG) method [38], XFEM [30] and peridynamics method [39]. We aim to use this 
simulation to show that the cohesive zone enlargement approach helps capture the crack branching shape with a 
coarse mesh.  
The geometry and boundary condition of the specimen is shown in Figure 17. The material property used are 
𝐸𝐸 = 32𝐺𝐺𝐺𝐺𝐺𝐺, 𝑣𝑣 = 0.2, and 𝜌𝜌 = 2450 𝑘𝑘𝑔𝑔 𝑚𝑚3⁄ . The critical energy release rate 𝐺𝐺𝐼𝐼𝐼𝐼 = 𝐺𝐺𝐼𝐼𝐼𝐼𝑐𝑐 = 0.003𝑁𝑁 𝑚𝑚𝑚𝑚⁄  is 
adopted from [30]. We use 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 = 1.2 × 10−3𝑚𝑚𝑚𝑚 for the bilinear cohesive law. 3D 6-node solid element and 
8-node cohesive element are used in the model and the mesh size is 1𝑚𝑚𝑚𝑚 for the whole model. According to 
Section 4, a typical cohesive zone length for glass is around 0.4 mm, thus for 1mm mesh size, the predicted 
behavior is that it cannot capture the correct crack shape since there is not enough elements inside the cohesive 
zone. With cohesive zone enlargement approach, however, instead of using high density mesh to capture the 
high stress field around crack tip, the cohesive strength around crack tip is reduced to give the same effect. 
When cohesive zone enlargement approach is used, a minimum number of 3 cohesive elements is guaranteed 
within the cohesive zone by reducing the cohesive strength, and the critical energy release rate is reduced 
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correspondingly so that the maximum separation remains unchanged. Algorithm is implemented in user-defined 
cohesive material model in LS-DYNA to find elements around crack tips, and only these elements have reduced 
cohesive strength, thus avoiding altering the material property of the whole model.   
The crack shape at different times are plotted in Figure 18 for cases with and without cohesive zone 
enlargement approach. As shown in Figure 18, using cohesive zone enlargement approach captures the dynamic 
crack branching very well, compared to the result using XFEM approach [30], as shown in Figure 19. To 
further verify the method, crack propagation speed is extracted and compared to the XFEM result [30], as 
shown in Figure 20. The Rayleigh speed is 2050𝑚𝑚/𝑠𝑠 according to [38]. Similar to XFEM result [30], the crack 
propagation speed quickly increases to a maximum of 2000𝑚𝑚/𝑠𝑠 around 0.003𝑚𝑚𝑠𝑠 and crack branching occurs 
after that.  

 
Figure 17. Geometry and boundary condition of the plate 

  
(a) Time = 0.039 ms 

  
(b) Time =0.047 ms 

  
(c) Time = 0.069 ms 

Figure 18. Crack propagation with time. Left column: crack shape without cohesive zone enlargement approach;  
Right column: crack shape with cohesive zone enlargement approach 
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(a) Cohesive element method (b) XFEM [30] 

Figure 19. Final crack path comparison between cohesive element method and XFEM from literature  

 
Figure 20. Crack propagation speed 

 
 

6. Conclusion 
 
A comprehensive study about cohesive elements and artificial compliance is carried out in this paper. It is 
concluded that by choosing the proper cohesive stiffness and element size, the effect of artificial compliance 
can be negligible without increasing the computational cost too much. A comparison between bilinear and 
exponential cohesive law is also carried out. From the initial stiffness and cyclic loading point of view, bilinear 
cohesive law is superior to exponential cohesive law if cohesive elements are used between every element 
interfaces. Cohesive zone enlargement approach is adopted in arbitrary crack propagation, and it is modified to 
apply only to the region near crack tip. Benchmark studies of Kalthoff experiment and dynamic crack branching 
test are used to prove the feasibility of modified cohesive zone enlargement approach. These results verify that 
using cohesive zone enlargement approach allows us to use relatively large mesh size, and capture the crack 
shape and crack speed at the same time. 
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