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Abstract 
 
This work shows the results of a continuum model of deformation and damage for API X70 steel based on the strain gradient theory. 
The model is developed according to the continuum mechanics of the elastic/viscoplastic framework. The constitutive equations of the 
model include the dislocation theory according to the roles of the statistically stored and geometrically necessary stored dislocation 
densities during plastic deformation. In addition, effects of nucleation and growth of voids are considered within the constitutive 
equations as a ductile failure based on a classical isotropic damage model. Then, the model is examined for scale and strain rate 
effects. The developed model is implemented into LS-DYNA® by writing a subroutine within USER_DEFINED_MATERIAL_MODELS 
(UMAT). A ASTM tensile test is simulated to examine the validity of the model. The results show a good agreement with experimental 
data found in the literature. 

 
 

Introduction 
 

API X70 is high strength low alloy steel that is used in manufacturing pipelines for crude oil and natural 
gas transportation worldwide. It is a member of API steel family that is standardized by American Petroleum 
Institute (API) and ranges from X47 to X120 grade [1]. The number after the X denotes the yield strength in ksi. 
Each grade has different chemical properties and thermomechanical fabrication processes that determine its 
mechanical properties such as strength, toughness, and ductility deformation or ductile failure. One of the most 
effective ways to evaluate the strength and deformation of a material is by utilizing a tension test. The strength 
and deformation of X70 has been investigated in many studies over the last two decades[2–18]. The investigations 
are still being performed on X70 to guarantee its long-life service under high operational pressure.  

In addition to the experimental works are performed on X70, there are several numerical attempts to 
describe its strength and deformation behavior based on classical continuum deformation theories. In the 
classical deformation theories, the stress is related to the strain in a straightforward way. Thus, a short literature 
review presents the models that have been used thus far to describe the deformation and the ductile failure of 
X70. De Luna et al. structured a continuum model for analyzing the static and dynamic fracture behavior of 
X70 [19]. The model they introduced was based on a power law that describes the plastic deformation, but the 
ductile failure was described by Rice and Tracey model [20]. In addition, Rivalin et al. established a continuum 
model based on Norton’s law [21] for the viscoplastic behavior and a simple power law for the hardening 
behavior, and they used the Gurson-Tvergaard-Needleman (GTN) continuum damage model [22] for softening or 
ductile failure in order to simulate in-plane crack propagation in wide plates of X70 [4]. However, Chen et al. 
analyzed the ductile tearing of X70 in single edge notch tension specimens [9]. In the analysis, Ramberg-Osgood 
power-law [23] described the plastic flow behavior, while the GTN model was used for describing the softening 
behavior. With the same model, Chen et al. simulated the numerically ductile tearing in X70 wide plates for 
semi-elliptical surface cracks [5]. Then, Kim et al. compared a simulation of a ductile failure of X70 with an 
experiment by using a phenomenological stress-modified fracture strain model [24] [8]. Lastly, Paredes et al. [13] 
modeled X70 based on the J2 theory of plasticity. Here, a simple hardening law was used. Their work focused 
on the post necking stage for predicting a crack initiation and propagation. However, for softening, Paredes et 
al. used the model that was introduced by Li and Wierzbicki [25] which is based on a non-linear power law. 
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Paredes et al. modeled the fracture initiation and propagation based on the modified Mohr-Coulomb fracture 
criterion [26]. These studies that have been conducted to describe the deformation and ductile failure of X70 
numerically.  

After surveying the relevant literature, the previous models are based on the conventional continuum 
theories that do not consider the internal material variables, such as dislocation density. Literature Models of the 
deformation and ductile failure of X70 lack a model that employs the dislocation density theory, despite the 
dislocation density being responsible for the aspects of materials deformation. During fracture, for example, the 
interactions of dislocations and voids determine whether a behaviors of a cleavage is brittle or ductile by 
influencing the stress field near the crack tip [27,28]. In addition, the tearing failure is a common problem that 
X70 pipelines encounter. Therefore, a deformation model based on the strain gradient theory is developed in 
this research to study X70 deformation. 

The strain gradient theory is approached in different ways. First, it is approached by taking the gradient 
of the of plastic shear strain to address the density of geometrical necessary stored dislocations in order to 
homogenize the heterogeneity of alloy deformation and accommodate the curvature change during deformation 
[29]. In addition, the strain gradient theory estimates the size dependent phenomena of the plastic deformation 
behavior in sub-micro scale problems that classical plasticity theories lack [30]. Here, the gradient of the plastic 
shear strain is implicitly imbedded in the hardening equations [31]. Another approach of the strain gradient is to 
study and describe the softening behavior of materials [32,33]. Also, it is used to solve the instability of the finite 
element method during the softening behavior. Here, the gradient of plastic shear strain is used explicitly in 
plastic flow equations [34]. In addition to these approaches, the higher order gradient (Laplacian) [35] is used. 
Since the scope of this research does not focus on the strain gradient theory, these cited works give an adequate 
idea about the theory. Thus, the first approach of the strain gradient theory is used in this work to consider 
dislocation density during the deformation. More elaboration is provided in the constitutive equations section. 

X70 steel experiences a ductile failure or softening that directs our model to adopt a ductile failure 
criterion. According to the continuum damage theory, the ductile failure is ascribed to voids nucleation, growth, 
and coalescence processes at micro scale during plastic deformation [28,36–39]. There are several continuum 
damage models such as the continuum damage mechanism (CDM) [40,41], the GTN [22,42], the Rousselier model 
[43], the Rice and Tracey model [20], and the Perzyna model [44]. The Perzyna model is used in this work because 
it fits directly into the deformation model without needing for a vital modification to the constitutive equations. 
Moreover, the Perzyna model has few variables that must be determined during the simulations. Perzyna 
established an elastic/viscoplastic model that interprets the postcritical behavior and fracture of dissipative solid 
by considering the void volume fraction as a parameter that measures internal imperfections [44]. The ductile 
failure or fracture is a consequence of nucleation, growth, and linkage of voids due to the plastic deformation 
and stress state that exceeds the yield stress point. Perzyna also postulated that the volume fraction parameters 
are equivalent to nucleation, growth, and transport or diffusion parameters of voids, but he dropped the 
transport component because it is only significant at an elevated temperature. Thus, the model is reduced to a 
simple form of nucleation and growth of voids.  

This work implements constitutive equations based on the strain gradient theory in a LS-DYNA UMAT 
subroutine to describe the plastic deformation of X70. Also, the Perzyna model for void nucleation and growth 
is implemented to describe the ductile failure or softening. Then, a tension test is simulated at different strains 
and mesh sizes, and the results are then compared to the experimental results. The experimental work that is 
used for comparison is the work done by Wang et al. [16]. 
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Constitutive equations 

 
Since the UMAT subroutine requires a user to use the strain as the input to the constitutive equations 

and update the state of stress, the equations are formulated and proceeds according to the using of the 
subroutine [45]. A boldface font is used for tensors. As mentioned earlier, X70 is modeled based on the 
elastic/viscoplastic framework. Therefore, the constitutive equations of the model are based on the assumption 
that the total strain rate tensor 𝑫𝑫 (= 𝑫𝑫𝑒𝑒 + 𝑫𝑫𝑝𝑝) can be additively decomposed into an elastic part 𝑫𝑫𝑒𝑒 and 
plastic part 𝑫𝑫𝑝𝑝. For the elastic strain rate, the material obeys the general Hook’s law of linear isotropic 
elasticity based on the formation introduced by Navier and Lame [46], but the formulation is modified to 
consider the total damage parameter, 𝜉𝜉, i.e., 
 

�̇�𝝈 = ((𝜆𝜆 𝑡𝑡𝑡𝑡𝑫𝑫𝑒𝑒)𝐈𝐈+ 2𝜇𝜇𝑫𝑫𝑒𝑒)�1 −�𝜉𝜉� , (1) 

where �̇�𝝈 is the Cauchy stress rate tensor, 𝐈𝐈 is the unit tensor, and 𝜆𝜆 and 𝜇𝜇 represent Lame’s elastic constants. 
Then, the equation for plastic deformation is formed, while bearing in mind that X70 is an incompressible 
isotropic solid. Consequently, the plastic deformation is dependent on the Cauchy deviatoric stress, as follows: 
 

𝝈𝝈′ = 𝝈𝝈 − 𝒕𝒕𝒕𝒕(𝝈𝝈)
𝟑𝟑
𝐈𝐈  or  𝝈𝝈′ = 𝝈𝝈 − 𝜎𝜎𝑀𝑀𝐈𝐈, (2) 

 
and 𝜎𝜎𝑀𝑀 represents the mean normal stress. Next, the model is formed based on an elastic/viscoplastic 
framework; thus, there is a time dependent behavior for X70 during plastic deformation. Consequently, the 
model does not involve yield condition, while the transition between elastic and plastic deformation is 
controlled by a simple power law [47] that shows different yield values at different strain rates as required by the 
viscoplastic theory [48]. Before stating the power law, the power law is a scalar, while the previously mentioned 
stress state is a tensor. Therefore, the invariant function of stress is used in this case. The effective stress is 
based on the von Mises formulation that can accommodate the isotropic behavior of X70. Also, softening is 
implemented into the model, making the plastic flow dependent on the deviator stress and first invariant of 
stress, 𝐼𝐼𝜎𝜎  : 
 

𝜙𝜙 = �1
2
𝝈𝝈′:𝝈𝝈′ + 𝛼𝛼𝑑𝑑  𝐼𝐼𝜎𝜎 , (3) 

 
where 𝛼𝛼𝑑𝑑 =  𝛽𝛽𝜉𝜉 . Generally, 𝛽𝛽 is a material parameter, and it determines how much influence 𝜉𝜉 has on the 
flow stress. Then, the plastic flow is assumed to follow the normality rule that is based on the plastic potential 
Eq. (3), so the plastic strain tensor is formulated as follows: 
 

𝑫𝑫𝒑𝒑 = �̇̅�𝛾𝑃𝑃 𝝏𝝏𝜙𝜙
𝝏𝝏𝝈𝝈

= �̇̅�𝛾𝑃𝑃𝑴𝑴𝒔𝒔
′  , (4) 

 
where the orientation tensor 𝑴𝑴𝒔𝒔

′ = 𝑴𝑴𝒔𝒔 + 𝛼𝛼𝑑𝑑𝐈𝐈 ,   𝑴𝑴𝒔𝒔 = 𝝈𝝈′/2�𝝈𝝈′:𝝈𝝈′/2 . 
 

Theoretically, softening also influences the hardening of the material, therefore it is incorporated into the 
power law denominator that is responsible of the hardening. Thus, the power law becomes as follows: 
 

�̇̅�𝛾𝑃𝑃 = �̇�𝛾0( 𝜏𝜏�
𝜏𝜏∗�1−�𝜉𝜉�

)
1
𝑚𝑚. (5) 
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where �̇̅�𝛾𝑃𝑃 = √2𝑫𝑫𝑝𝑝:𝑫𝑫𝑝𝑝 is the effective or equivalent plastic shear strain rate, 𝜏𝜏̅ = 𝝈𝝈:𝑴𝑴𝒔𝒔

′  , the effective shear 
stress,  �̇�𝛾0 a material constant that is about 0.001 s-2, 𝑚𝑚  strain rate sensitivity, and 𝜏𝜏∗ represents the work 
hardening component. Hardening is formulated according to the modified Taylor hardening formula [49] to 
describe the work hardening based on the dislocation density: 
 

𝜏𝜏∗ = 𝜏𝜏0 + 𝛼𝛼𝜇𝜇𝛼𝛼�𝜌𝜌𝑡𝑡 , (6) 
 
where 𝜏𝜏0 represents the yield shear stress, 𝛼𝛼 represents a material constant that varies from 0.3 to 0.5, and 𝛼𝛼 
represents the burgers vector magnitude. Here, 𝜌𝜌𝑡𝑡 represents the total of the dislocation density that introduces 
the dislocation density theory to the model. 𝜌𝜌𝑡𝑡 is an internal state variable that determines the work hardening 
of the overall plastic deformation behavior. The work hardening occurs because of the interactions of 
dislocations [27]. More dislocation density means more interactions that requires more load to be applied to 
deform a material further.  

To describe this phenomenon numerically, 𝜌𝜌𝑡𝑡 must be explained further. 𝜌𝜌𝑡𝑡 is an aggregation density of 
preexisting dislocations, 𝜌𝜌0, statistically stored dislocations, 𝜌𝜌𝑠𝑠𝑠𝑠, and geometrically necessary stored 
dislocations, 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺 . According to the strain gradient theory, 𝜌𝜌𝑠𝑠𝑠𝑠 is the predominant factor in contributing to the 
work hardening at macroscale problems. It is determined according to the following formulation [29]: 
 

�̇�𝜌𝑠𝑠𝑠𝑠 = 𝛼𝛼4
 𝛾𝛾�̇𝑃𝑃

𝑏𝑏𝜆𝜆�
, (7) 

 
where 𝛼𝛼4 represents a constant of order of unity, and �̅�𝜆 represents the mean free path that is the average of a 
distance traveled by a line of dislocation before being halted by another line of dislocation or an obstacle. it is 
determined to be �̅�𝜆 = 1

�𝜌𝜌𝑡𝑡
, and it is on the order of a few nanometers.  

 The geometrically necessary dislocation density 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  plays a significant role at sub-micron scale 
[31,50,51]. By considering 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺 , the strain gradient is considered; therefore, the size effect is also considered [52]. 
It is formulated based on the equivalent plastic shear strain gradient as follows: 
 

𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺 = �∇𝛾𝛾�𝑃𝑃�
𝑙𝑙

, (8) 

 
where 𝑙𝑙 represents the characteristic length that is about 104𝛼𝛼 [51].  

The evolution of the total damage parameter or voids parameter 𝜉𝜉 is assumed to consist of two parts, the 
nucleation part 𝜉𝜉𝐺𝐺 and the growth part 𝜉𝜉𝐺𝐺 , as follows [44]: 
 

   �̇�𝜉 = �̇�𝜉𝐺𝐺 + �̇�𝜉𝐺𝐺  , (9) 

 
where the growth of voids is defined by the following evolution equation [44]: 
 

         �̇�𝜉𝐺𝐺 = (1 − 𝜉𝜉)𝜂𝜂(𝑡𝑡𝑡𝑡𝑫𝑫𝒑𝒑) , (10) 
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where 𝜂𝜂 is taken as a constant in the Perzyna model [44]. However, 𝜂𝜂 has been assumed to be a function to 
describe the voids growth by Pilling et al. [53]. Then, it was  modified by Khaleel et al. [54] to become a function 
in 𝜎𝜎�, 𝜎𝜎𝑀𝑀,  𝑚𝑚, and Ξ, which is a material constant that is independent of temperature and strain rate. Thus, in 
this work, 𝜂𝜂 is assumed to be based on the modification by Khaleel et al. [170]: 
 

𝜂𝜂 = Ξ 3
2
�𝑚𝑚+1

𝑚𝑚
� sinh �2 �2−𝑚𝑚

2+𝑚𝑚
� 𝜎𝜎𝑀𝑀

𝜎𝜎�
�. (11) 

 
Then, the nucleation of the voids is formulated by the following equation: 
 

   �̇�𝜉𝐺𝐺 = 𝐹𝐹(𝐷𝐷�𝑝𝑝𝑧𝑧) 𝛔𝛔:𝑫𝑫𝑝𝑝

(1−𝜉𝜉)
, (12) 

 
where 𝐹𝐹 represents a material constant that is independent of temperature and strain rate, 𝐷𝐷�𝑝𝑝 is the effective 
plastic strain, and 𝑧𝑧 represents a material constant. 
 
 

Numerical implementation 
 

The constitutive equations are implemented in a LS-DYNA UMAT subroutine. LS-DYNA is a 
commercial finite element analysis solver that is favorable for solving high strain rate problems such as 
explosions and collisions. LS-DYNA solver uses a dynamic code of finite element analysis that seeks dynamic 
equilibrium for Cauchy’s equations of motion [46,55]. However, LS-DYNA can be switched into a static 
equilibrium where the acceleration is not considered. The UMAT subroutine is a window allows users to 
implement a model for particular applications.  

Numerical simulations of a tensile test according to ASTM standards are conducted, and the tensile test 
specimen is modeled according to the sub-size specimen dimensions [56]. The grip sections are eliminated to 
reduce the computational time. In Table 1, the parameters are imported from the work that is done by Wang et 
al. [16] except for the damage parameters that are curve fitted. Flow curves of the simulations are compared with 
the experimental result of X70 that was reported by Wang et al. [16]. In addition, true and engineering flow 
curves are used as a benchmark for the curve fitting process. Then, the curve fitting process is conducted to fit 
the simulations results with the experimental results, and the process is conducted over two stages: no damage 
and damage stages. During this process, the 𝛼𝛼4, 𝜌𝜌0, 𝛽𝛽, Ξ, and 𝐹𝐹 parameters were curve fitted to make the 
simulations agree with the experiment work.  

The parameter 𝛼𝛼4 is an internal material constant that specifies at which rate is 𝜌𝜌𝑠𝑠𝑠𝑠 evolves to provide 
the right work hardening. Then, 𝜌𝜌0 is curve fitted for a refined fit of curves. Next, the last three parameters are 
damage parameters that are curve fitted to experiment curves because they were reported for a superplastic 
material by Khaleel et al. [54]. In addition, the 𝑧𝑧 value is not changed from what was reported in the work by 
Khaleel et al. [54]. However, 𝑚𝑚 is determined to be 0.0134 based on the work by Wang et al. where he reported 
flow curves at different strain rates. Flow curves of strain rates, 0.01 s-1 and 0.001 s-1, are used to determine 𝑚𝑚. 
Table 1 shows the parameters for the simulations after the curve fitting process is conducted.  

The model is examined at different strain rates and sizes. However, this research uses 0.001 s-1 for the 
main analyses of the study. For size-effect examination, the specimen is downscaled to nanoscale dimensions, 
while keeping all the specimen aspects same. Also, the same macroscale parameters are assumed for the 
nanoscale. Along with all the analyses, the mesh sensitivity is considered. Therefore, the simulations are 
performed over to mesh sizes, 756 and 6048 elements. Finally, 𝛼𝛼4 and 𝛽𝛽 are mesh size dependent as is shown in 
the results and discussion section. 
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Table 1: X70 parameters for the constitutive equations. 

Density Young’s 
modulus 

Poisson 
ratio 

Yield shear 
stress 

An empirical constant 
in Taylor hardening 

law 
Burger vector 

ρ (kg/m3) E (GPa) ν τ0 (GPa) α b (m) 
7800.0 210.0 0.3 0.327 0.3 2.5∙10-10 

Shear strain 
rate 

hardening 

Strain rate 
sensitivity 

Initial 
dislocation 

density 
Bulk modulus Numerical constant of 

order of unity Shear modulus 

γ0(s-1) m ρ0 (m-2) K (GPa)  α 4 μ (GPa) 
0.001 0.0134 1·1012 175.0 0.08  80.7 

Lame’ 
constant  Damage Parameters 

            β                         Ξ                                  F                                    z λ (GPa)  
121.0  1.75 0.01 0.004 2.0 

 
 

Results and Discussion 
 

To validate the model results, the simulations are conducted over two stages, no damage and with 
damage. First, tension test simulations without a damage criterion 𝜉𝜉 = 0 are conducted to generate true flow 
curves and then compared to the experiment curve, as shown in Figure 1. The strain in the figures is up to 0.02 
because the true flow curve of the source experiment was reported up to this point. Then, 𝛼𝛼4 and 𝜌𝜌0 are studied 
to have a well agreement between the simulation and experiment. By studying these parameters, 𝛼𝛼4 controls the 
hardening of the material during plastic deformation, while 𝜌𝜌0 controls the initial yield point of the curve from a 
simulation perspective. This behavior can be explained from physical perspective that 𝛼𝛼4 is responsible for the 
evolving rate of 𝜌𝜌𝑠𝑠𝑠𝑠 determining the hardening of materials. More dislocations create more resistance for the 
plastic flow, in order to overcome this issue, more applied load is needed to create further deformation. This 
explanation is according to the dislocation theory by the pioneer work of Taylor [49][27]. 𝜌𝜌0 represents the 
preexisting dislocation density that is a part of the yield strength. Lowering 𝜌𝜌0 to 107 m-2 provides a simulation 
that shows a good agreement with the experiment result, but this is an unrealistic value that means X70 has 
nearly a perfect crystalline structure. From a simulation perspective, this value shows that the model does not 
need to consider the preexisting dislocation density to run a simulation because 𝜌𝜌𝑠𝑠𝑠𝑠 evolves adequately. Figure 2 
shows 𝜌𝜌𝑠𝑠𝑠𝑠 versus true strain for 𝜌𝜌0 at 107 m-2 and 1012 m-2. In general, the model shows a good agreement with 
experiment without damage, as shown in Figure 1 B.  

 

Figure 2: Experiment and simulation during the curve fitting process of different values of A) α4 and B)  ρ0 
. 

A) B) 

Figure 1: The evolution of ρss at different values of  ρ0 . 
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Then, the time of the simulations is extended to obtain large strain to determine if any geometrical 
instability occurs for the model. The model shows homogenized deformation throughout the gauge length of the 
specimen, as shown in Figure 3. In addition, a snapshot of the stress contour at the end of the simulation does 
not show localization. A plateau of the curve occurs at large strain with large stress that are behind the 
capability of X70. Therefore, the model does not show any strain localization.  

 

 A mesh size analysis was performed at two different mesh sizes, 756 and 6048 elements. the model 
shows no mesh size sensitivity. The simulations are stopped at the maximum experiment strain that is 0.23, as 
shown in Figure 4. Although the gradient of plastic shear strain has no effect on the mesh size because 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  is 
insignificant compared to 𝜌𝜌𝑠𝑠𝑠𝑠 when the model is simulated at the macroscale. Figure 5 shows the accumulated 
𝜌𝜌𝑠𝑠𝑠𝑠 and 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  versus �̅�𝛾𝑝𝑝 and snapshots of the contours of 𝜌𝜌𝑠𝑠𝑠𝑠 and 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  at the end of the simulation. The 
contour of 𝜌𝜌𝑠𝑠𝑠𝑠 spreads all over the gauge length, while the contour of 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  presents the maximum 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  
values are at the opposite corners of the gauge length. The main contribution of work hardening comes from 
𝜌𝜌𝑠𝑠𝑠𝑠. Thus, 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  can be ignored if the model is used for a macroscale problem [52]. 

 

Figure 3: Simulation without damage criterion at a large strain that is more than 1.0. 

Figure 4: Mesh sensitivity for the undamaged 
model. 

756 Elements 

6048 Elements 

Figure 5: Accumulation ρt, ρss, ρGND and dislocation densities. 

ρGND ρss 



15th International LS-DYNA® Users Conference Constitutive Modeling 

June 10-12, 2018  8 

To examine the size effect of the model, the nanoscale specimen is simulated by assuming X70 has the 
same parameters of the macroscale. In this case, the specimen is just downscaled to nanoscale dimensions while 
keeping the other aspects of the specimen same. As a result, 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  has a significant contribution for the work 
hardening at nanoscale, as shown in Figure 6. The red solid curve shows 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  for the nanoscale specimen, 
while the dash red curve shows 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  for the macroscale specimen, but the blue curves represent 𝜌𝜌𝑠𝑠𝑠𝑠 for both 
cases. The size effect of the model increases the strength at the nanoscale specimen, as shown in Figure 7. The 
snapshot of the stress contour for the nanoscale specimen shows a large amount of stress at the opposite corners 
of gauge length of the specimen and portion of the specimen; this is attributed to 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  where it is as significant 
as 𝜌𝜌𝑠𝑠𝑠𝑠 at a nanoscale case. This finding aligns perfectly with the strain gradient theory. Furthermore, the mesh 
size shows an effect on the numerical solution at the nanoscale case, because 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺  is a mesh dependent 
quantity since it dependent on the plastic shear strain gradient. Figure 8 shows mesh dependence of the model at 
nanoscale and compares the nanoscale results to the macroscale results. Thus, the model shows slight mesh 
sensitivity at nanoscale and capturing the size effect when 𝜉𝜉 = 0. 
 

Figure 8: Dislocation densities comparison between macroscale and nanoscale specimens. 

Figure 7: Flow curves comparison between macroscale 
and nanoscale specimens. The snapshot is for stress 
contour. L is the total length of the specimen. 

Nano 
L= 46 nm 

Macro 
L= 46 mm 

Figure 6: Mesh sensitivity of the nanoscale model and 
compared with the macroscale model. 
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In the second stage, the model is simulated with the damage criterion, where 𝜉𝜉 ≠ 0. The curve fit process 
is conducted to determine the parameters of the damage model. The results indicate that the model shows more 
sensitivity to 𝛽𝛽 than other damage parameters. In Figure 9, all other damage parameters are kept fixed, as stated 
in Table 1, but 𝛽𝛽 is controlled to provide the best fit with the experiment. Next, the model was examined at 
different strain rates, as shown in Figure 10, and the model shows good agreement with the experiment result. 
 

Next, mesh sensitivity analysis is conducted on the model, and the model shows extreme dependency 
upon the mesh size. To curve fit the simulation to the experiment at different mesh sizes, only the mesh 
sensitive parameters, 𝛼𝛼4 and 𝛽𝛽, are calibrated, as shown in Figure 11. At 756 elements mesh, the best fit was 
obtained when 𝛼𝛼4 is 0.08 and 𝛽𝛽 is 1.75, as stated in Table 1. However, when 6048 elements mesh is used for 
best fit, 𝛼𝛼4 and 𝛽𝛽 are 0.12 and 0.1, respectively. Also, 6048 mesh is more numerically stable than 756 mesh. It 
reached 𝜉𝜉 ≈ 0.65 before it became numerically unstable. To validate the use of these parameters and to insure 
that the model generates reasonable values, the two meshes values of 𝜌𝜌𝑡𝑡 and 𝜉𝜉 are compared, as shown in Figure 
12 and Figure 13. In this comparison, the simulation runs up to the maximum strain of 756 mesh, before it is 
stopped. 𝜌𝜌𝑡𝑡 corresponds to a value within 𝜌𝜌𝑡𝑡 range found in literature. For example, 𝜌𝜌𝑡𝑡 has been estimated 
experimentally to be between 3.0 × 1015 m-2 and 6.0 × 1015 m-2 for similar kinds of steel [57–59]. Also, the results 
of 𝜉𝜉 are reasonable for both meshes. However, the snapshot of  𝜉𝜉 contour are presented as bands at about 45° 
with respect to the load direction, as shown in Figure 13. However, since the model results show homogenized 
deformation and no localization, the bands are manifolded across the gauge length as the mesh is refined. Thus, 
the curve fitting process to generate well fit simulation curves is valid. 
 

 
 
 

Figure 9: The curve fitting process by controlling β. Figure 10: The damaged model at different strain rates and 
compared with the experiment result at a strain rate of 
0.001 s-1. 
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Conclusion  
 

A continuum model of deformation and damage is constructed based on the strain gradient theory to 
describe the X70 pipelines steel. The model is formulated numerically according to the elastic/viscoplastic 
framework, and the hardening behavior is described by the accumulation of the densities of the statistically 
stored dislocations and geometrically necessary stored dislocations. However, the softening behavior, ductile 
failure, is described by the nucleation and growth of voids according to an isotropic damage model. The model 
is implemented in a LS-DYNA UMAT subroutine. The model is examined for different strain rates, mesh sizes, 
and scales. The model shows sensitivity to mesh size when the damage parameter is considered. In addition, the 
model shows a size effect at a submicron-scale analysis due to gradient effects. The simulation results of the 
model agree with the experiment results found in the literature. 

 
 
 
 

Figure 13: Comparison between mesh size 756 and 
6048 elements for ρt. 

6048 

756 

Figure 11: Comparison between mesh size 
756 and 6048 elements for ξ. 

6048 

756 

Figure 12: Mesh sensitivity in damaged model and curve fitting processes by controlling α4 
and β. 
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