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Abstract 
 
Inter-laminar delamination in laminated composites has been studied with the help of thickness-stretch shell elements using a 3-D 
material model and compared against the traditional plane-stress shell elements. A strain-rate and pressure dependent micro-
mechanical material model using ply-level progressive failure criteria has been used to simulate the initiation and propagation of 
delamination. The material parameters of the non-linear resin have been determined using LS-OPT®. The numerical delamination 
growth has been qualitatively analyzed against the experimental C-scan images for multiple impact events on different composite 
plates. In addition, a non-local model with an isotropic weight function has been implemented to work in conjunction with the 
composite micro-mechanical material model to alleviate strain softening typically seen in composite materials.  
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1. Introduction 
Delamination, the principal model of failure of layered composites is the separation along interfaces, and is 
often considered to be one of the most dominant damage mechanism in the failure of composite laminates. 
Simulating and predicting delamination in composite materials is a challenging task, however it is critical in 
characterizing the overall response of Uni-Directional Composites (UDC). Typically, delamination failure is 
modelled in commercial finite element programs in the following ways: 

1. Model a layer of shell or solid elements for each composite layer and bond the layers with a tiebreak 
contact. 

2. Model a layer of shell of solid elements for each composite layer and bond the layers with cohesive 
elements. 

Both these methods have their limitations as the use of solid element layers makes the simulations 
computationally expensive and the use of traditional shell elements doesn’t quite represent the true mechanics 
of delamination accurately. Mainly because traditional shell element formulations often use a plane stress 
formulation (i.e., they do not account for the out-of-plane stress of σ33). In addition, using tiebreak contacts with 
shell layers also triggers an un-realistic chain reaction of failure.  
Arguably the fastest, most robust  and efficient shell element formulation, which is usually the default element 
type in most commercial finite element codes, is based on the work of Belytschko, Lin and Tsay [1]. At its core 
this element formulation depends on the Reissner-Mindlin kinematic assumption which states that a plane 
section, originally normal to the mid-surface, remains plane and unstretched while allowing for shear 
deformations to occur. However, in addition to the zero thru-thickness stress limitation discussed above, these 
element types also need a modified constitutive law which corrects for the strain in the thickness direction. 
Since the early 1990’s, there have been numerous attempts to formulate shell elements accounting for through-
thickness deformation. Works of Simo et al. [2], Parish [3], Hauptmann and Schweizeroff [4] and Doll et al. [5] 



15th International LS-DYNA® Users Conference Composites 

June 10-12, 2018  2 

demonstrate some of many contributions in the area of solid-shell element formulations. Büchter and Ramm [6], 
[7], El-Abbasi and Meguid [8], Betsch et al. [9] and Bischoff [10] have further enhanced the work to be applied 
for thin shells by solving the problem of strong thickness locking. 
Cardoso’s [11] work in particular overcomes the limitations of the Belytschko, Lin and Tsay formulation by 
relaxing the ‘unstretched’ Reissner-Mindlin assumption and allowing for a linear strain variation through the 
thickness as shown in Figure 1. This creates additional degrees of freedom which allows for loading on the 
surface of a shell element and would require a 3-D constitutive law in addition to preserving the advantages of 
the Belytschko, Lin and Tsay formulation. These type of shell elements have conventionally been used in sheet 
metal forming applications, where the presence of normal stresses in the thickness direction has been observed 
to improve the accuracy of the solution.  

 
Figure 1: Traditional shell vs Thru-thickness shell 

It is generally acknowledged that finite elements models with a fine mesh (smaller element size) yield more 
accurate results [12], [13]. However, this is no longer the case for strain-softening materials. Numerical studies 
have shown that the results in strain-softening materials are essentially dependent on the finite element mesh 
[14]–[16]. This complication is well known (Belytschko et al. [17], Larsy et al. [18]), and any type of strain 
localization phenomena (failure, in-elasticity, damage), will tend to localize in the smallest element of the finite 
element mesh. In other words, the smallest element in the mesh will tend to fail/erode before other elements. 
Also, finer the mesh, the energy dissipated by the numerical model decreases and tends to extremely low values, 
sometimes even to zero. Hence, the uniqueness of the solution with respect to the mesh size is lost, which is 
quite troubling from a numerical standpoint.  
Different remedies addressing this problem have been presented in the open literature and can be classified into 
different categories/approaches. Cohesive crack models/Cohesive zone models (CZM) [19]–[21], Crack Band 
Model [22]–[24], Regularized differential (gradient-enriched) formulations [25]–[27] and Regularized integral 
formulations [28]. The current work focuses on studying the effect of integral nonlocal formulations on micro-
mechanical composite models. These formulations abandon the classical assumption of locality and define 
stress at a point to be dependent not only on the state variable (usually strain, damage) at that point but also on a 
distribution of the state variable in a vanishing region around the point [29] and are fairly easier to work with in 
comparison to the differential formulations. 
 

2. Micro-mechanics of the uni-directional composite (UDC) 
The representative volume cell (RVC) used to develop the micro-mechanical relations is shown in figure (1). 
This RVC is the same as the one originally proposed by Pecknold and Rahman [30] and further used in various 
micro-mechanical models by Tabiei et al. in [31], [32], [33] and Medikonda et al. [34], [35]. However, for 
completeness the micro-mechanics relations are briefly discussed here. The unit cell is divided into three sub-
cells: one fiber sub-cell, denoted as f, and two matrix sub-cells, denoted as MA and MB respectively. The 
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effective stresses in the RVC are determined from the sub-cell values by combining 2 material parts: material 
part A consists of the fiber sub-cell f and the matrix sub-cell MA, and material part B consists of the remaining 
matrix MB using the iso-strain boundary conditions for all the directions. The dimensions of the unit cell are 1 × 
1 unit square. The dimensions of the fiber and matrix sub-cells are denoted by Wf and Wm respectively as shown 
in Figure 2 and defined as shown below: 
 
                                            ff VW = ;     fm WW −= 1                                               ….. (1) 
 
where, Vf is the fiber volume fraction.  

 
Figure 2: A representative volume cell of unidirectional fiber reinforced polymer composite 

Visco-plastic constitutive relations based on modified Bodner-Partom state variable model, initially proposed 
by Goldberg et al. [36] and further enhanced by Zheng et al. [37] have been used to represent the matrix sub-
cells MA and MB. The full details of the model can be found in these references, however for completeness only 
the incremental form of those equations are given below. 
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Stability against high strain increments has been ensured by implementing a 4-step Runge-Kutta integration 
scheme.  
The constitutive relations of the fiber are initially assumed to behave as an elastic transversely isotropic material 
however these relations become orthotropic with damage evolution. The direct and shear stress stiffness 
matrices in terms of the properties of the fibers are: 
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Once the stresses in all the constituent sub-cells have been obtained, they are then combined using the iso-strain 
boundary conditions to obtain the effective stresses of the RVC. 
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Since, the use of iso-strain boundary conditions for shear isn’t quite realistic in a physical sense [34], different 
ad-hoc shear volume fraction coefficients, Vs4 and Vs5, for the in-plane and transverse shear have been 
introduced and have values quite lower than the volume fraction of the fibers. Damage parameters id , 

4,  5,  6i = , represent the damages imposed on the matrix material and affect only the shear stresses of the resin. 
Damage parameters id , 1,...,6i = , in the above relations follow progressive failure models and are discussed in 
the following section. 
Damages zd , yzd and zxd are introduced by the inter-laminar delamination model use the same criteria as 
MAT161 in LS-DYNA. Delamination initiation, which is a consequence of the quadratic interaction between 
the out-of-plane stresses of a lamina and is assumed to be mainly a lamina failure is given by the following 
relation: 
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It has to be noted here that the elastic material parameters specified in Equation (14) correspond to the macro-
properties of the lamina, which are back calculated from the stiffness matrix assembled for the RVC (Equations 
(8-13)) as discussed by Qu and Cherkaoui [38].  
Once the damage threshold has been reached, delamination failure is introduced using a Weibull damage 
function in a progressive manner. 
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Depending on the opening or closing of the damage surfaces, Equation (15) is used to subsequently reduce zd , 

yzd and zxd . Note that the presence of friction is also accounted with the help of the Coulomb-Mohr theory when 
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the damaged/delaminated surfaces are “closed” [32], [39]. The advantage of using a CDM based failure model 
is that it can effectively simulate failure under all conditions such as opening, closure and sliding of failure 
surfaces. 
 

3. Damage and Non-local formulation 
Progressive damage models with strain softening behavior have traditionally been observed as good remedies to 
significantly improve damage predictions [40]–[42]. The first well known CDM model was developed by 
Matzenmiller, Lubliner and Taylor (MLT) [43]. Works of Williams and Vaziri [44], [45] have later reviewed 
and suggested improvements to the MLT model. Damage growth in the current work is hence based on different 
variations of the Weibull distribution functions. Fibers are assumed to govern the behavior of the composite in 
direct loading, while the matrix is assumed to dictate the response in the shear directions. 
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Where, |t c  denotes tension or compression. When a positive strain is detected, the parameters for tension are 
utilized otherwise the parameters provided for compression are used.  |

fud
ij t cσ  is the undamaged stress in the fibers 

and when the damage d1 reaches 0.01 in tension, the finite element is considered to be totally failed. Damages 
d2, d3 are constrained to not fall below 0.1 and the shear damages below 0.2. The primary reason for 
constraining the damages is to account for the numerical instabilities that arise when stress in an element goes to 
zero.  
For the non-local approach, the formulation proposed by Andrade et al. [46] has been incorporated in the 
‘urmathn’ subroutine to work with the user-defined material model (UMAT) in LS-DYNA (Figure 3). The 
nonlocal approach consists of calculating its nonlocal counterpart obtained by weighted averaging over a spatial 
neighborhood of each point under consideration. Hence in a domain field V, the corresponding nonlocal damage 
variable is defined as: 

( ) ( , ) ( ) ( )k k
V

d d dVβx x ξ ξ ξ= ∫                                          ….. (18) 

Where, ( , )x ξβ is a given nonlocal operator. In an infinite body, the weight function depends only on the 
distance between the ‘source point’, ξ , and the ‘target’ point, x , and is given by the following relation: 
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It should be noted that the weighing function ( , )x ξα  is a monotonically decreasing non-negative function of 
the distance x ξr = − . Typically, a Gaussian distribution is considered as the weight function and is given by 
the following relation: 
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Where L , is a parameter reflecting the internal length of the nonlocal continuum and should be experimentally 
determined.  
From a numerical implementation point of view, the non-local value of the damage variable can be calculated 
by using the damage from the previous time step ‘n’ (Equation (16)) and the Gaussian quadrature integration 
rule. 

1

inpg
n n

k j j ij k
j

d w J dβ
=

= ∑                                                ….. (21) 

Where, ijβ is the nonlocal operator that relates the Gauss points i  and j  located at global coordinates x  and ξ  
respectively. In additions the quantities jw  and jJ  are the Gaussian weights and Jacobian evaluated at Gauss 
point j . Lastly,  inpg  is the number of Gauss points that lie inside the nonlocal volume of interaction from point 
i . It should be noted that the factors jw , ijβ  and jJ  are merely geometrical in nature and they depend on the 
finite element mesh itself rather that the constitutive model (UMAT). Hence, these factors only need to be 
calculated once, at the start of a simulation. The key part of the implementation lies in calculation of the 
nonlocal penalty factor nlK : 

n
nl k

n
k

dK
d

=                                                         ….. (22) 

which is then used to calculate the nonlocal value of the damage variable at the current time step ( 1)*n
kd +  

( 1)* 1n nl n
k kd K d+ +=                                                       … (23) 

Lastly, instead of the local value of the damage the updated nonlocal value can be used in reducing the stiffness 
of lamina. 

( 1)*(1 )damaged n un damaged
k k kE d E+ −= −                                         ….. (24) 

 
The reduced values of the stiffness are then used to calculate the effective stresses of the representative volume 
cell discussed in the previous section. Note that, the drawback of accessing the neighboring integration points at 
once is overcome by adopting a strategy that saves and uses information of the damage variable from a previous 
time step. The disadvantage of such as assumption is that it necessitates small time steps for enough accuracy. 
However, since the explicit time integration scheme of LS-DYNA naturally requires a very small-time step (less 
than the critical time step ( max2t ω∆ ≤ ) to guarantee stable solutions this condition is easily met. It is worth 
mentioning that LS-DYNA does offer the option of using nonlocal formulations through the keyword 
*MAT_NONLOCAL, however this option is limited to the use of very few elastoplastic models, nonetheless 
user-defined material models. 
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Figure 3: Schematic flowchart illustrating the implementation of nonlocal strategy in LS-DYNA 

[46] 
 
 

4. Numerical Results and Discussion of Inter-laminar delamination 
Impact events on T800H/3900-2 CFRP plates have been chosen for verification. Since the current material 
model has been based on micro-mechanics, there is a need to characterize the visco-plastic material parameters 
of the resin. However, it must be noted that the stress-strain responses that are necessary for the calculation of 
the viscoplastic parameters are not available directly in the literature. For the 3900-2 resin, these have been 
back-calculated based on the work Tabiei and Babu [47]. In their work, Tabiei and Babu presented the visco-
plastic parameters for a resin material model based on the Goldberg-Stouffer relations. A standalone material 
model based on these relations and the material parameters has been developed as a VUMAT in LS-DYNA and 
stress-strain curves have been generated for 3 strain rates in the tensile (0.1/s, 1.4/s and 510/s) and shear (0.1/s, 
1.76/s and 420/s) directions. The generated data has then been fit to the current resin material model using the 
LS-OPT software, the flow chart of which is shown in Figure 4.  
LS-OPT [48] is a standalone optimization software that can be linked to any finite element code. It is 
particularly useful for the current case since it provides a simple interface to work with LS-DYNA. One popular 
use of LS-OPT is for calibrating material parameters. Parameter identification problems are non-linear inverse 
problems solved using optimization, in other words, the computed curve from LS-DYNA (dependent on 
parameters) is matched to an input curve. The two essential components involved in parameter identification are 
the optimization algorithm and the curve matching metric. The Sequential Response Surface Method (SRSM) is 
the recommended/default optimization algorithm used in parameter identification problems, the reader is 
directed to Stander et al. [48] for further details on this algorithm.  
To calculate the mismatch between the target and the computed curve, an ordinate-based Mean Square Error 
(MSE) curve matching metric has been selected. For completeness, the underlying principle of this metric is 
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discussed here. Once the target stress-strain curves have been inputted as file histories, the mean squared 
residual error between the input data and the numerically generated data (based on a tensile and shear responses 
for various strain rates) has been calculated based on the equation given in Equation (25) and subsequently 
minimized. 

2 2

1 1

1 ( ) 1 ( )( ) .

,
( ): simulation response as a function of variable vector 
: target value
: weighting factor

: normalization factor (absolute 

N N
i i i

i i
i ii i

i

i

i

i

f G eMSE W W min
N s N s

where
f
G
W
s

= =

   −
= = →   

   
∑ ∑x xx

x x

max. value of each curve)
: no. of points
( ) : error at each pointi

N
e x

                  ….. (25) 

 
 

 
Figure 4: LS-OPT Flowchart for resin material parameter calculation 

 
It must be noted that the backend solver has been built using intel compilers and the UMAT (User MATerial) 
subroutine in LS-DYNA, based on the constitutive relations discussed in section 2. As inputs for LS-OPT, 
parameterized single element input decks with tensile and shear boundary conditions have been used with the 
respective strain rate specified. As it can be observed from Figure 6, the fitted response of the 3900-2 resin is 
quite close to the target data specified.  
Table 1 lists all the visco-plastic parameters obtained for the 3900-2 resin from LS-OPT. The above discussion 
and the use of an optimization tool (LS-OPT) presents a simplified way of characterizing the visco-plastic 
material once the experimental data is available. 
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Resin 0 ( )E GPa  mν  0 (1 / )D s  n  0 ( )Z MPa  1( )Z MPa  q  0α  1α  

3900 - 2  3.5  0.34  61*10  1.5 188.447  464.172  237.143 0.284  0.01  

Table 1: Material Constants for the 3900-2 Resin 

The impact event on CFRP plates made of T800H/3900-2 fiber/resin system with a laminate stacking sequence 
of  [ ] S30/45/90/45 −  and total thickness of 4.65 mm has been simulated using the current material model in 
LS-DYNA. These experimental results were originally obtained by an extensive investigation of out-of-plane 
impact loading of composite test coupons by Delfosse [49] and were used by Williams and Vaziri et al. [45] to 
evaluate the predictive capability of a plane-stress CDM based model for composite materials that they 
implemented in LS-DYNA.  
The goal of this study is to qualitatively predict the delamination and compare it with the experiments as 
reported in Williams et al. [45]. The test coupon consists of a simply supported 76.2 mm by 127 mm plate 
impacted by a hemispherical steel impactor ( mm 4.25  in diameter), which in the numerical computation is 
treated as rigid body. The FE model is shown in Figure 5. 
 

 
Figure 5: A full model view of the T800H/3900-2 CFRP laminate 
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Figure 6: Tensile and Shear stress fitted curves for 3900-2 resin 
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The CFRP plate consists of 24-thru thickness integration points with each integration point representing a layer 
of the laminate stacking sequence [ ] S30/45/90/45 − . In addition to the visco-plastic properties of the resin 
specified in Table 1, the remaining material properties needed to carry out the simulations have been specified 
in Table 2. 
 

fV  1 ( )o sε −  1( )E GPa  12ν  ( )tX Mpa  ( )cX Mpa  2 ( )E GPa  23ν  

0.51 1×10–3 294 0.25 5490 1600 19.6 0.25 

2 ( )t Mpaσ  2 ( )c Mpaσ  12 ( )oG GPa  23( )G GPa  4sa  4mε  5mε  4sV  

400 255 20 7.26 0.010 0.14 0.14 0.100 

5sV  ( )Ga GPa  tb  cb  3 ( )tS MPa  230 ( )S MPa  310 ( )S MPa   (deg.)ϕ  

0.200 0.800 1.36 1.00 79 86 64 10 

S  dm        

1.0 2       

Table 2: Fiber and damage properties for the T800H/3900-2 lamina 

Figure 7 qualitatively compares the predictions of projected inter-laminar delamination to the C-scan 
images of delamination growth for the low mass impact events provided in [45].  The box drawn around the 
numerical results highlights the location of the plate boundaries relative to the part of the plate modelled. 
Observing the results presented in Figure 7, the following comments can be made: 

a) The total delamination area looks smaller as compared to the experiments when both sets of images 
in each figure (numerical and C-scan) are set to the same scale. The reasons for these can be 
attributed to two possibilities.  

i. First, the C-scan images indicate matrix failure and delamination in the complete laminate. In 
other words, they show the cumulative delamination in all layers. The numerical results on the 
other hand are shown only for the interface that experiences the maximum amount of 
delamination (which is the bottom most interface for the current cases), this is due to a limitation 
in the post-processing capabilities for shell elements.  

ii. Secondly, the delamination model used in the current study uses a stress-based criterion, where 
the inter-laminar and out-of-plane stresses were used to predict the initiation and growth of 
delamination. These models have traditionally been proven to be effective in capturing the 
initiation of delamination, but aren’t as effective in capturing the scale effects. Davies and Zhang 
[50] and subsequently Tabiei and Babu [32] have shown that the stress-based delamination 
criteria under predict  the delamination area. 

b) The shape of the delamination however looks quite identical in both the cases as compared to the 
experiments. 

c) The delamination areas predicted by the thickness-stretch element models seem to be identical as 
compared to the areas predicted by the plane-stress shell element models.  
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Figure 7: Comparison of the delamination damage and experimental C-scan images on a T800H/3900-2 

CFRP plate. Numerical results obtained using plane-stress shell elements have been shown on the left and the 
thickness-stretch shell elements on the right. 

 
To further understand the effect of Z-Stress on delamination behavior, it is important to consider the effect of 
each term on the left-hand side of equation (14). In this equation, the first term accounts for the contributions 
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from Z-Stresses, the second term for the YZ-Stresses and the last term for the ZX-Stresses of the lamina. The 
contributions of each of these stresses can be better understood from Figure 8-Figure 10. 
The following comments can be made on the results presented in these figures. 

a) A contribution of the Z-Stresses has been seen in the model run using thickness-stretch shell elements, 
however this is small compared to the contribution from the YZ and ZX-Stresses, i.e., the number of 
red-spots are fewer. Which explains the identical shapes observed in Figure 7. It must be noted that as 
the total value of these terms goes beyond a value of 1, damage is introduced into the model and the load 
bearing capacity of the lamina in Z, YZ and ZX directions is reduced. 

b) As expected, for the model run with traditional plane-stress shell elements, the Z-Stress contribution is 
zero and the total damage is completely dominated by the YZ and ZX-Stress contributions in the 
delamination criteria. 

c) Despite being small, the contribution of Z-Stresses in predicting delamination cannot be completely 
ignored. These stresses have been observed to have contributed nearly 6% of the total delamination 
damage at the point of initiation.  
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Figure 8: Contribution of Z-Stresses in the calculation of delamination for the bottom layer. Numerical 

results obtained using plane-stress shell elements have been shown on the left and the thickness-stretch shell 
elements on the right. 
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Figure 9: Contribution of YZ-Stresses in the calculation of delamination for the bottom layer. Numerical 

results obtained using plane-stress shell elements have been shown on the left and the thickness-stretch shell 
elements on the right. 
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Figure 10: Contribution of ZX-Stresses in the calculation of delamination for the bottom layer. 

Numerical results obtained using plane-stress shell elements have been shown on the left and the 
thickness-stretch shell elements on the right. 
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5. Non-local Results and Discussion 
To test the non-local technique, it has been implemented along with the micro-mechanical material model 
discussed in the previous sections and applied on a tensile dog-bone specimen, commonly used in the 
experimental determination of the properties of composites. The dimensions of the specimen are shown in 
Figure 11. 

 
Figure 11: Tensile Dog-bone Specimen [46] 

The FE models have been built for 3 mesh sizes. It should be noted that the mesh size has been only significant 
increased for the curved part of the specimen since this is the primary area of interest. The symmetry in the 
specimen has been taken into consideration and hence only a quarter of the model has been modeled to reduce 
computational effort.  
The material properties of E-glass/Epoxy discussed in Medikonda et al. [35] have been used here. Note that one 
end of the specimen has been fixed and the other end of the specimen is being pulled by 1.2 mm. Initially, the 
models have been run without calling the non-local routine and the results of local damage in the pull direction 
in the end deformed state have been presented in Figure 12. As expected, strain tends to localize in a few 
elements for these cases and as a result the material damages completely in those regions. In addition, note that 
the maximum allowable damage in the fiber direction ( 1d ) has been constrained to 0.01 to account for 
numerical instabilities and element deletion has been turned off. 
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Results shown in Figure 13 correspond to the tensile tests carried out with the non-local formulation activated. 

It is clearly seen that the non-local formulation prevents strain-localization and shows a more smeared effect of 
damage. It is important to note that the maximum damage (lower value shown in the figure) experienced by 
each model is different and for consistent comparison the fringe limits have been manually adjusted to 
correspond to the maximum damage experienced by the models in the figure (which is the model with most 
elements in this case).  
As the no. of elements in the model increases, the damage distribution tends to become similar and the variation 
in the maximum amount of damage observed in each model, becomes quite less as well. Also, as expected with 
an increase in the mesh density, a smoother variation of damage has been observed. 

 
Figure 12: Local Damage in the Tensile Dog-bone Specimen for different mesh sizes 
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Figure 13: Non-local damage in the Tensile Dog-bone Speciment for different mesh sizes 

6. Conclusions 
A strain-rate dependent micro-mechanical material model has been developed in LS-DYNA (as a user-defined 
material UMAT), to study delamination damage growth in uni-directional composites using thickness-stretch 
shell elements and plane-stress shell elements under impact loading conditions. This is mainly done as, through-
thickness stresses resulting from out of plane loadings, such as contact forces, are expected to either promote or 
inhibit delamination growth. The ability of thickness-stretch shell elements in using a 3-D constitutive law 
makes them an interesting option in studying delamination growth, especially when used in conjunction with a 
stress-based approach.  
The strain-rate dependency is accounted with the help of the modified Bodner-Partom viscoplastic relations in 
the resin. A significant advantage of these relations is that they account for the contribution of the hydrostatic 
stresses in predicting the non-linear response, which is a well-known and crucial characteristic of polymers. The 
material parameters of the resin have been characterized by minimizing the mean square error in an 
optimization software (LS-OPT).  
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In addition, a nonlocal model has been coupled with a non-linear micro-mechanical composite material model 
and implemented with the UMAT. The non-local formulation has been designed to work with the progressive 
damage law of the constitutive model. Numerical analyses have been carried out on a tensile dog-bone 
specimen and the results have shown that the non-local strategy has been able to prevent the strain localization 
traditionally seen in strain-softening material models. 
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