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Abstract 
 
Heart disease is among the leading causes of death in the Western world; hence, a deeper understanding of cardiac functioning will 
provide important insights for engineers and clinicians in treating cardiac pathologies. However, the heart also offers a significant set 
of unique challenges due to its extraordinary complexity. In this respect, some recent efforts have been made to be able to model the 
multiphysics of the heart using LS-DYNA. 
 
The model starts with electrophysiology (EP) which simulates the propagation of the cell transmembrane potential in the heart. This 
electrical potential triggers the onset of cardiac muscle contraction, which then results in the pumping of the blood to the various 
organs in the body. The EP/mechanical model can be coupled with a Fluid and Structure Interaction (FSI) model to not only study the 
clinically relevant blood flow parameters as well as valves or cardiac devices. This paper concentrates on the EP part of the model. 
Other papers in this conference will present the mechanical and FSI parts. 
 
Different propagation models, called “mono-domain” or “bi-domain”, which couple the diffusion of the potential along the walls of 
the heart with ionic equations describing the exchanges between the inner and the outer parts of the cells have been implemented. 
These models were first benchmarked against published results obtained from other EP research codes on a simple cuboid heart 
tissue model. Other simulations were then performed on more realistic geometries. Since the potential diffusion is highly orthotropic, 
with much larger diffusion coefficients along the fibers of the tissue than transversally, it is important to correctly model these fibers, 
which creates models with very large numbers of elements (several tens to hundreds of millions of elements). We thus implemented 
capabilities to be able to handle such large-scale models. Some EP models will be presented and first results will be shown. 
 
 
 

1-Introduction 
 
A cardiac computational model can give biomedical researchers an additional source of information to 
understand how the heart works. Simulation can be the base of theoretical studies into the mechanisms of 
cardiac pathologies, provide diagnostic value or can be used to assist in therapy planning. The goal of LSTC is 
to be able to simulate the pumping heart, with a coupling scheme between the EP equations describing the 
propagation of the transmembrane potential, the mechanical deformations triggered by this electrical potential, 
and the blood flow in this pumping heart.  
Section 2 will present the EP models introduced in LS-DYNA, section 3 will show some benchmarks between 
LS-DYNA and other EP codes, and in section 4, we will show an example of spiral wave development in a 
ventricle. 
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2-Presentation of the model 

 
The wall of the heart has three layers: epicardium, myocardium and endocardium. The endocardium and 
epicardium are thin layers consisting primarily of collagen and elastic tissue. In the middle layer, the 
myocardium, the cells that constitute the muscle show electrical excitability. These specialized cells, called 
myocytes, are organized into parallel cardiac fibers giving the muscle the striated appearance. The fibers form 
sheets which are connected by a collagenous network [1]. 
A cardiac cell (myocyte) is typically 10 to 20 μm in diameter and 80 to 125 μm in length. The cell membrane 
acts as an electrical insulator and contains ion channels which transport electrical current by diffusion. The 
potential difference across the membrane is called the transmembrane potential. Initially, a cardiac cell is at rest, 
with a potential difference across the membrane. The potential inside the cell is negative compared to the 
external, with a potential difference around 80mV. If the membrane potential rises to a certain threshold value 
(close to 40 mV) a rapid process occurs, during which different ions, mainly Na+, K+, and Ca2+, are exchanged 
between the inner and the outer part of the cell, creating a fast depolarization, an early repolarization, a plateau 
and a final repolarization. The complete cycle of depolarization and repolarization lasts around 300 ms and is 
called “action potential”. It is shown in Figure (1). This action potential diffuses from cell to cell through a 
network of gap junctions, creating a wave of depolarization and repolarization through the myocardium [1]. 

 
Figure 1: A typical action potential of a ventricular myocyte and the underlying ion currents. The resting 
membrane potential is approximately ~80 mV (phase 4). The rapid depolarization is primarily due to the 
voltage gated Na+ current (phase 0), which results in a relatively sharp peak (phase 1) and transitions into the 
plateau (phase 2) until repolarization (phase 3). Also indicated are the refractory period and timing of the 
ventricular contraction. Modified from Tortora GJ, Grabowski SR. Principles of Anatomy and Physiology, 
ninth edition. New York: John Wiley & Sons, Inc., 2000 
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2-1 The bidomain model 
 
Since describing the whole heart, or even part of it like a ventricle, at the cell level would be computationally 
too expensive, continuous approximations are made, where the inner part of the cells is treated as one 
continuum “domain” with an inner potential 𝜙𝜙𝑖𝑖(�⃗�𝑥, 𝑡𝑡), and the outer part as another domain with an external 
potential 𝜙𝜙𝑒𝑒(�⃗�𝑥, 𝑡𝑡). Each domain is characterized by a conductivity tensor, called respectively 𝜎𝜎𝑖𝑖 and 𝜎𝜎𝑒𝑒. These 
tensors are usually highly non-isotropic, with factors that can be as high as 5 to 10 between the conductivity 
along the fibers and the one across the fibers. Therefore, it is very important to correctly model the fiber 
orientation, which can be consumed from an imaging technique called the diffusion tensor MRI. A 
transmembrane current with surface density 𝐼𝐼𝑚𝑚 flows between the two domains hence the so called “bi-domain” 
equations [2]: 
∇ ∙ (𝜎𝜎𝑖𝑖∇𝜙𝜙𝑖𝑖) = 𝛽𝛽𝐼𝐼𝑚𝑚                    (1) 
∇ ∙ (𝜎𝜎𝑒𝑒∇𝜙𝜙𝑒𝑒) = −𝛽𝛽𝐼𝐼𝑚𝑚                   (2) 
where 𝛽𝛽 is the membrane surface to volume ratio. 
This transmembrane current density 𝐼𝐼𝑚𝑚 consists of a capacitive part, an ionic part generated by the cell 
membrane 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖, and an imposed stimulation current density 𝐼𝐼𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚: 
𝐼𝐼𝑚𝑚 = 𝐶𝐶𝑚𝑚

𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝑠𝑠

+ 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚                   (3) 
where 𝐶𝐶𝑚𝑚 is the membrane capacity per unit area, and we introduced the transmembrane potential: 
𝑉𝑉𝑚𝑚 = 𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑒𝑒                     (4) 
 

 
Figure 2: Illustration of the bidomain method (adapted from “Multiscale forward electromagnetic model of 
uterine contractions during pregnancy”, La Rosa et al. BMC Medical Physics 2012, 12:4.). 

 
Using (3) and (4), we can rewrite equations (1) and (2) in terms of 𝑉𝑉𝑚𝑚 and 𝜙𝜙𝑒𝑒 𝑎𝑎𝑎𝑎: 
𝛽𝛽𝐶𝐶𝑚𝑚

𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝑠𝑠

+ 𝛽𝛽𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑉𝑉𝑚𝑚,𝑢𝑢) − ∇ ∙ (𝜎𝜎𝑖𝑖∇𝑉𝑉𝑚𝑚) − ∇ ∙ (𝜎𝜎𝑖𝑖∇𝜙𝜙𝑒𝑒) = 𝛽𝛽𝐼𝐼𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚(�⃗�𝑥, 𝑡𝑡)             (5) 
∇ ∙ (𝜎𝜎𝑖𝑖∇𝑉𝑉𝑚𝑚) + ∇ ∙ ((𝜎𝜎𝑖𝑖 + 𝜎𝜎𝑒𝑒)∇𝜙𝜙𝑒𝑒) = 0                  (6) 
In equation (5), we wrote 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑉𝑉𝑚𝑚,𝑢𝑢), to indicate that the ionic current density depends not only on the 
transmembrane potential 𝑉𝑉𝑚𝑚, but also on an extra set of variables that we represent by 𝑢𝑢. The number of such 
variables and their time evolution depend on the cell model chosen, which we write, in a general way:  
𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠

= 𝑓𝑓(𝑢𝑢,𝑉𝑉𝑚𝑚)                     (7) 
These cell models locally describe the exchange of ions through the cell membrane, as schematically shown in 
Figure 1. Depending upon the question of interest, one can select from a wide class of ionic models, ranging 
from the FitzHugh-Nagumo model [3][4] with two variables or the Fenton-Karma model with 3 variables [5] to 
the one discussed in this paper, the ten Tusscher and Panfilov model [6] with 19 variables. 
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Projecting equations (5) and (6) onto the FEM basis functions, we get: 
 
 𝛽𝛽𝐶𝐶𝑚𝑚𝑀𝑀

𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝑠𝑠

+ 𝛽𝛽𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑖𝑖𝑉𝑉𝑚𝑚 − 𝑆𝑆𝑖𝑖𝜙𝜙𝑒𝑒 = 𝛽𝛽𝐼𝐼𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚                 (8) 
𝑆𝑆𝑖𝑖𝑉𝑉𝑚𝑚 − 𝑆𝑆𝑖𝑖𝑒𝑒Ф𝑒𝑒 = 0                     (9) 
where 
𝑀𝑀(𝑖𝑖, 𝑗𝑗) = ∫ 𝜑𝜑𝑖𝑖𝜑𝜑𝑗𝑗𝛺𝛺 𝑑𝑑𝑑𝑑                     (10) 
Is the mass matrix, and 
𝑆𝑆𝑖𝑖(𝑖𝑖, 𝑗𝑗) = ∫ 𝜎𝜎𝑖𝑖∇𝜑𝜑𝚤𝚤������⃗   ∇𝜑𝜑𝚥𝚥�������⃗

𝛺𝛺  𝑑𝑑𝑑𝑑                   (11) 
and 
𝑆𝑆𝑖𝑖𝑒𝑒(𝑖𝑖, 𝑗𝑗) = ∫ (𝜎𝜎𝑖𝑖 + 𝜎𝜎𝑒𝑒)∇𝜑𝜑𝚤𝚤������⃗   ∇𝜑𝜑𝚥𝚥�������⃗

𝛺𝛺  𝑑𝑑𝑑𝑑                   (12) 
are diffusion stiffness matrices corresponding to different conductivities. 
In order to solve the coupled diffusion equations (8)-(9) with the ionic one (7), we use a so called “Spiteri-
Ziaratgahi” operator splitting [7] where the advance from time t to time t+1 reads: 
𝑢𝑢(𝑡𝑡 + 1) = 𝑢𝑢(𝑡𝑡) + 𝑑𝑑𝑡𝑡 𝑓𝑓(𝑢𝑢(𝑡𝑡),𝑉𝑉𝑚𝑚(𝑡𝑡), 𝑡𝑡)               (13) 

�
𝛽𝛽𝐶𝐶𝑚𝑚
𝑑𝑑𝑠𝑠

𝑀𝑀 + 𝑆𝑆𝑖𝑖 𝑆𝑆𝑖𝑖
𝑆𝑆𝑖𝑖 𝑆𝑆𝑖𝑖𝑒𝑒

� ∙ �𝑉𝑉𝑚𝑚
(𝑡𝑡 + 1)

𝜙𝜙𝑒𝑒(𝑡𝑡 + 1)� = �
𝛽𝛽𝐶𝐶𝑚𝑚
𝑑𝑑𝑠𝑠

𝑀𝑀𝑉𝑉𝑚𝑚(𝑡𝑡) − 𝛽𝛽𝑀𝑀𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑢𝑢(𝑡𝑡 + 1),𝑉𝑉𝑚𝑚(𝑡𝑡), 𝑡𝑡) + 𝛽𝛽𝑀𝑀𝐼𝐼𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚
0

�        (14) 

 
2-2 The monodomain model 
 
The monodomain model makes the extra hypothesis that the inner and outer conductivity tensors are 
proportional: 𝜎𝜎𝑒𝑒 = 𝜆𝜆𝜎𝜎𝑖𝑖. We introduce a mean conductivity [2]: 
𝜎𝜎 = 𝜎𝜎𝑖𝑖𝜎𝜎𝑒𝑒

𝜎𝜎𝑖𝑖+𝜎𝜎𝑒𝑒
                   (15) 

or 
𝜎𝜎𝑖𝑖 = (1 + 𝜆𝜆)𝜎𝜎                   (16) 
𝜎𝜎𝑒𝑒 = 1+𝜆𝜆

𝜆𝜆
𝜎𝜎                   (17) 

Equation (6) gives: 
∇ ∙ (𝜎𝜎𝑖𝑖∇𝜙𝜙𝑒𝑒) = − 𝜆𝜆

1+𝜆𝜆
∇ ∙ (𝜎𝜎𝑖𝑖∇𝑉𝑉𝑚𝑚)                 (18) 

which gives, when using it in (5), an equation on 𝑉𝑉𝑚𝑚 only: 
𝛽𝛽𝐶𝐶𝑚𝑚

𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝑠𝑠

+ 𝛽𝛽𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑉𝑉𝑚𝑚,𝑢𝑢) − ∇ ∙ (𝜎𝜎∇𝑉𝑉𝑚𝑚) = 𝛽𝛽𝐼𝐼𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚(�⃗�𝑥, 𝑡𝑡)              (19) 
This is the monodomain equation. 
When projecting equation (19) onto the FEM basis functions, we get: 
𝛽𝛽𝐶𝐶𝑚𝑚𝑀𝑀

𝜕𝜕𝑉𝑉
𝜕𝜕𝑠𝑠

+ 𝛽𝛽𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 − SV = 𝛽𝛽𝐼𝐼𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚                (20) 
with 
𝑆𝑆(𝑖𝑖, 𝑗𝑗) = ∫ 𝜎𝜎∇𝜑𝜑𝚤𝚤������⃗   ∇𝜑𝜑𝚥𝚥�������⃗

𝛺𝛺  𝑑𝑑𝑑𝑑                   (21) 
And 𝑀𝑀 is defined by (10). 
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3-Benchmark against other EP codes 

 
3-1 Presentation of the benchmark 
 
The benchmark we decided to perform is described in detail in [8], where 11 codes were compared on the same 
diffusion test case. Their main characteristics are presented in table 1. 
 

Index Code/developer Home institute Numerical 
method 

Element type 

A CHASTE University of Oxford FEM hexahedra 
B CARP University of Graz FEM tetrahedra 
C Sander Land University of Oxford FEM hexahedra 
D Richard Clayton University of Sheffield FDM regular grid 
E EMOS University of Zaragoza FEM hexahedra 
F OpenCMISS University of Auckland FEM hexadreha 
G Alan Garny University of Oxford FDM regular grid 
H FEniCS/PyCC Simula FEM tetrahedra 
I acCELLerate Karlsruhe Inst. Tech. FDM regular grid 
J Alan Benson University of Leeds FDM regular grid 
K E.M Cherry Rochester Inst. Tech. FDM regular grid 

 
Table 1. Code index, name and developers. Abbreviations: FDM, finite difference method; FEM, 
finite element method. See more details in [8]. 
 
The test case consists in a 20mm x 7mm x 3mm cuboid part of tissue which is stimulated by injecting a current 
at one corner. The diffusion of the transmembrane potential through the tissue is studied. 
Figure (3) represents the simulation domain. The cardiac electrical activation or stimulus, is applied within a 1.5 
mm cube placed at the bottom left corner of the domain around point P1, at time t=0. As mentioned, the ten 
Tusscher & Panfilov ionic ventricular cell model [6] is used. The conductivity tensor is anisotropic with a 
higher conductivity in the y-direction where the cuboid is the longest (20mm), in units of S.m-1: 
 

𝜎𝜎 = �
𝜎𝜎𝑇𝑇 = 0.017606 0 0

0 𝜎𝜎𝐿𝐿 = 0.133418 0
0 0 𝜎𝜎𝑇𝑇 = 0.017606

�            (22)   
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Figure 3: Simulation domain for the benchmark: the stimulation is specified at point P1 (see yellow node set), 
and propagates towards the opposite corner at point P8 
 
The benchmark proposes to solve the problem at three spatial resolutions (dx = 0.5, 0.2 and 0.1 mm) and with 
three different time-steps (dt = 0.05, 0.01 and 0.005 ms) for a total of 9 simulations. The following presents the 
simulation results obtained first using the monodomain model and then with the bidomain model. 

 
dt1 (ms) dt2 (ms) dt3 (ms) 

0.05 0.01 0.005 
 

dx1 (mm) dx2 (mm) dx3 (mm) 
0.5 0.2 0.1 

Table 2: Time-steps and mesh sizes used in the benchmark model 
 
3-2 Monodomain results  
 
In the first set of simulations, we used the explicit Qu-Garfinkel Operator Split integration scheme ([10], [11] 
and Appendix A). Eight simulations succeeded but the 9th one, with the smallest discretization dx = 0.1 mm 
and the largest time-step dt = 0.05 ms has a time-step over the limit of the Courant-Friedrichs-Lewy (CFL) 
condition, and did not converge. The CFL condition is given by [9] as: 
𝑑𝑑𝑡𝑡 ≤ 𝛽𝛽𝐶𝐶𝑚𝑚𝑑𝑑𝑑𝑑2

2(𝜎𝜎𝐿𝐿𝜎𝜎𝑇𝑇)
                   (23) 

With the smaller discretization dx = 0.1 mm the equation gives 𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑑𝑑 = 0.046 ms, which is inferior to the 
largest benchmark time-step. 
 
For the second set of simulations, we developed three others integration schemes (Appendices B, C, and D) 
with the goal of solving the issue of the CFL condition and reducing the computation time. The second 
integration scheme, explicit first order operator split (Appendix B), did not solve the CFL issue of the case 9, 
but the two implicit integration schemes (Appendices C and D) succeeded and gave an accurate result. 
 
Figure 4 shows the activation time at node P8 for all 9 simulations. It is compared to the activation time given 
by the 11 codes used for benchmark in [8]. According to [8] the actual solution lies between 42.5 and 43 ms as 
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the eleven codes compared in [8] mostly converge towards such values. One can see that LS-DYNA gives 
results in this range. 
 

 
 
Figure 4: Activation time at P8 for every combination of spatial and temporal refinement in monodomain 
(11 benchmark codes on the left, LS-DYNA on the right) 
 
Figure 5 shows the activation time along the line from P1 to P8, compared with the results from the other 11 
benchmark codes. One can see that as soon as we have 𝑑𝑑𝑥𝑥 ≤ 0.2 𝑚𝑚𝑚𝑚, LS-DYNA gives very accurate results. 
Only code (A) in the 11 benchmarks code manages to get an accurate result even for 𝑑𝑑𝑥𝑥 ≤ 0.5 𝑚𝑚𝑚𝑚. 
 

 
Figure 5: Activation times along the line P1-P8 for solutions with dt = 0.005 ms and dx = 0.5 mm (blue 
line), 0.2 mm (green line) and 0.1 mm (red line) in monodomain. The results of the 11 benchmark codes are on 
the left, and the LS-DYNA results on the right.   
 
Figure 6 shows the activation time propagation on a plane going through P1 and P8. The figure may be 
compared to [8]-Figure 4. 
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from dark blue (0 ms) to red (130 ms) with contour bands at 10 ms intervals. 
 

 
Figure 6. Activation times on a plane containing P1 and P8, for the benchmark codes (left) and LS-DYNA 
(right). For each code, the upper and lower planes correspond to the solutions with  
dx =0.5mm, dt =0.005 ms and dx =0.1mm, dt =0.005 ms, respectively. The activation times are represented by 
the color map from dark blue (0 ms) to red (130 ms) with contour bands at 10 ms intervals. 

 
3-3 Bidomain results  
 
The Spiteri-Ziaratgahi Operator Split [7] (Appendix E) is used in this case. We repeated all 9 simulations which 
were all successful. For internal and external conductivities, we used: 
 

𝜎𝜎𝑖𝑖 = �
0.019 0 0

0 0.17 0
0 0 0.019

�                 (24) 

And 

𝜎𝜎𝑒𝑒 = �
0.24 0 0

0 0.62 0
0 0 0.24

�                 (25) 

Note that the monodomain electrical conductivity (22) was taken as an average of the internal and external 
bidomain conductivities (24) and (25) in the sense of equation (15). 
Figures 7 and 8 show the results, which again show activation times very similar to the ones in the benchmark 
codes.  
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Figure 7: Activation time at P9 for every combination of spatial and temporal refinement in bidomain 
(same scale as benchmark paper on the left, zoomed scale in the z direction on the right) 

 
Figure 8: Activation times along line P1-P8 for solutions with dt = 0.005 ms and dx = 0.5 mm (blue 
line), 0.2 mm (green line) and 0.1 mm (red line) in bidomain 

 
3-4 Results summary 
 
The following table gives the activation times at P8 obtained for the different simulations performed. 
 
  dt1-dx1 dt1-dx2 dt1-dx3 dt2-dx1 dt2-dx2 dt2-dx3 dt3-dx1 dt3-dx2 dt3-dx3 
monodomain A 60.79 42.95 X 60.21 42.42 40.82 60.12 42.36 40.75 

B 60.54  X    60.09   
C 61.49  44.21    60.19   
D 61.94  46.09    60.22   

bidomain E 61.16 44.8 44.36 59.89 42.3 40.89 59.7 41.97 40.42 
 
Table 3: Activation times at P8 (in ms) for each simulation. The X indicates that the simulation did not 
converge, and an empty block that the simulation was not done. 
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3-4 Large models 
 
The geometry presented in [8] was also used to generate much larger meshes than the one corresponding to 
dx=dx3, which has 420,000 elements. As already mentioned, the electrical conductivity is much larger along the 
fibers than across them, so it will be important to have the fiber orientation represented accurately. Also, it is 
important to capture the first rapid depolarization of the action potential (see Figure 1) in the wave propagation, 
which necessitates extremely fine meshes. We thus increased the mesh density step by step, and after some 
changes in the code to better handle the initial MPP decomposition of the model in terms of memory and 
computation time, a case with 100 million elements on 8 nodes of one of our machine that has 96 GB and 12 
cores per node was successfully run to completion. The run was done using the monodomain method with an 
implicit first order operator-split (Appendix B) and a Pre-Conditioned Gradient (PCG) method, with a time-step 
dt=0.01ms. It gave the same results as the case dt3-dx3 above. 
 

4-Spiral waves and arrhythmia in a ventricle 
 
The propagation of electrical waves through cardiac tissue is a very important phenomenon to study since those 
waves activate the mechanisms for cardiac contraction, responsible to pump blood to the body. In a healthy 
heart, an electrical wave of action potential propagates in a regular way through the various regions of the heart. 
Figure 9, which corresponds to a monodomain simulation on a 3D mesh with about 160,000 elements with the 
size and the shape of a ventricle, and where a stimulus was applied at the bottom, shows such a regular 
propagation. 
 

 
 
 
Figure 9: Propagation of the transmembrane potential in a healthy ventricle. The plots on the left show the 
fringe components of the potential at time 1050 ms (1), 1200 ms (b), 1400 ms (c), and 1600 ms (d). € shows time 
evolution of the potential at the 4 elements marked on the plots.   
 
One of the proposed mechanisms involved in the development of certain type of arrhythmias are spiral waves, 
which are symptomatic of functional reentry [6]. Spiral waves are self-sustained waves of excitation that rotate 
freely or around an obstacle, reactivating the same area of tissue at a higher frequency than normal, increasing 
the normal heartbeat rate (tachycardia). In the worst-case scenario, a spiral wave might break up into smaller 
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spiral waves giving uncoordinated contractions of the heart in a phenomenon known as fibrillation. When this 
phenomenon occurs in the ventricles, the heart quivers and loses capacity to pump blood to the body leading to 
immediate cardiac arrest. Figure 10 shows the development of such a spiral wave on the same model as the one 
used for Figure 9. In this case, the spiral was triggered by adding a second stimulus at a certain location of the 
ventricle just after the normal wave had passed through this location. One can clearly see the spiral on the fringe 
components, and the reactivations of the pulse at higher frequencies on the potential vs time plot, where the 
chaotic dynamics can also be seen. 
 

 
Figure 10: propagation of the transmembrane potential in a ventricle where a spiral wave has developed. The 
plots on the left show the fringe components of the potential at time 1050 ms (1), 1200 ms (b), 1400 ms (c), and 
1600 ms (d). (e) shows time evolution of the potential at the 4 elements marked on the plots.   
 

Conclusion 
 
An EP solver was introduced in LS-DYNA. Both monodomain and bidomain methods have been developed, 
with different algorithms for each of them. At this point, these 2 models are coupled to a ten Tusscher and 
Panfilov cell model. The model was compared to a benchmark case on a cuboid tissue and shows good 
agreement with the other codes. The model was then used on a ventricular geometry, where the formation of 
spiral waves was observed. 
 
In terms of EP, future work will consist of adding more cell models, and the capability to handle bath loading to 
account for the electrical conductive properties of the blood surrounding the heart. In terms of heart simulation 
in general, future work will consist of coupling the EP solver with the mechanical one, along with realistic 
tissue models, to simulate a heart pulse, and the ICFD solver to solve the blood flow. 
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Appendices 
 
Appendix A – Explicit Qu-Garfinkel Operator Split 
 
The Qu-Garfinqel Operator Split [10], [11] consists in a 1/2 step for the diffusion equation followed by a 
full step for the ionic equation followed by a 1/2 step for the diffusion equation. The two 1/2 steps are for the 
diffusion explicit. 
 

• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠. Integrate diffusion operator for half time-step: 

𝑀𝑀.𝑉𝑉𝑠𝑠+1/2 = 𝑀𝑀.𝑉𝑉𝑠𝑠 −
𝑑𝑑𝑡𝑡

2𝛽𝛽𝐶𝐶𝑚𝑚
𝑆𝑆.𝑉𝑉𝑠𝑠 

• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠+1/2. Integrate ionic operator for full time-step: 
𝐶𝐶𝑚𝑚�̇�𝑉 = 𝐼𝐼(𝑉𝑉,𝑢𝑢)
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑉𝑉,𝑢𝑢)
�  𝑉𝑉𝑠𝑠+1/2

∗  

With f described in [6] 
• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠+1/2

∗ Integrate diffusion PDE for half time-step: 

𝑀𝑀.𝑉𝑉𝑠𝑠+1 = 𝑀𝑀.𝑉𝑉𝑠𝑠+1/2
∗ −

𝑑𝑑𝑡𝑡
2𝛽𝛽𝐶𝐶𝑚𝑚

𝑆𝑆.𝑉𝑉𝑠𝑠+1/2
∗  

 
Appendix B – Explicit first order Operator Split 
 
The explicit first order Operator Split consists in a 1 step for the diffusion equation followed by a 1 step for the 
ionic equation at even time-step; and 1 step for the ionic equation followed by 1 step for the diffusion equation 
at odd time steps. The diffusion time steps are explicit. 
 
B-1 At even time step 
 

• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠. Integrate diffusion operator for one time-step: 

𝑀𝑀.𝑉𝑉𝑠𝑠+1 = 𝑀𝑀.𝑉𝑉𝑠𝑠 −
𝑑𝑑𝑡𝑡

2𝛽𝛽𝐶𝐶𝑚𝑚
𝑆𝑆.𝑉𝑉𝑠𝑠 

• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠+1. Integrate ionic operator for full time-step: 
𝐶𝐶𝑚𝑚�̇�𝑉 = 𝐼𝐼(𝑉𝑉,𝑢𝑢)
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑉𝑉,𝑢𝑢)
�  𝑉𝑉𝑠𝑠+1∗  

With f described in [6] 
• Set 𝑉𝑉𝑠𝑠+1 = 𝑉𝑉𝑠𝑠+1∗  

 
B-2 At odd time step 
 

• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠. Integrate ionic operator for full time-step: 
𝐶𝐶𝑚𝑚�̇�𝑉 = 𝐼𝐼(𝑉𝑉,𝑢𝑢)
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑉𝑉,𝑢𝑢)
�  𝑉𝑉𝑠𝑠∗ 

With f described in [6] 
• Set 𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑠𝑠+1∗  
• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠. Integrate diffusion operator for one time-step: 
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𝑀𝑀.𝑉𝑉𝑠𝑠+1 = 𝑀𝑀.𝑉𝑉𝑠𝑠 −
𝑑𝑑𝑡𝑡

2𝛽𝛽𝐶𝐶𝑚𝑚
𝑆𝑆.𝑉𝑉𝑠𝑠 

 
Appendix C – Implicit Qu-Garfinkel Operator Split 
 
The Qu-Garfinkel Operator Split consists in a 1/2 step for the diffusion equation followed by a full step for the 
ionic equation followed by a 1/2 step for the diffusion equation. The two 1/2 steps for the diffusion are implicit. 
 

• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠. Integrate diffusion operator for half time-step: 

�𝑀𝑀 +
𝑑𝑑𝑡𝑡

2𝛽𝛽𝐶𝐶𝑚𝑚
𝑆𝑆� .𝑉𝑉𝑠𝑠+1/2 = 𝑀𝑀.𝑉𝑉𝑠𝑠 

• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠+1/2. Integrate ionic operator for full time-step: 
𝐶𝐶𝑚𝑚�̇�𝑉 = 𝐼𝐼(𝑉𝑉,𝑢𝑢)
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑉𝑉,𝑢𝑢)
�  𝑉𝑉𝑠𝑠+1/2

∗  

With f described in [6] 
Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠+1/2

∗ Integrate diffusion PDE for half time-step: 

(𝑀𝑀 +
𝑑𝑑𝑡𝑡

2𝛽𝛽𝐶𝐶𝑚𝑚
𝑆𝑆).𝑉𝑉𝑠𝑠+1 = 𝑀𝑀.𝑉𝑉𝑠𝑠+1/2

∗  

 
Appendix D – Implicit first order Operator Split 
 
The implicit first order Operator Split consists in a 1 step for the diffusion equation followed by a 1 step for the 
ionic equation at even time step; and 1 step for the ionic equation followed by 1 step for the diffusion equation 
at odd time steps. The diffusion time steps are implicit. 
 
D-1 At even time step 
 

• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠. Integrate diffusion operator for one time-step: 

(𝑀𝑀 +
𝑑𝑑𝑡𝑡

2𝛽𝛽𝐶𝐶𝑚𝑚
𝑆𝑆).𝑉𝑉𝑠𝑠+1 = 𝑀𝑀.𝑉𝑉𝑠𝑠 

• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠+1. Integrate ionic operator for full time-step: 
𝐶𝐶𝑚𝑚�̇�𝑉 = 𝐼𝐼(𝑉𝑉,𝑢𝑢)
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑉𝑉,𝑢𝑢)
�  𝑉𝑉𝑠𝑠+1∗  

With f described in [6] 
• Set 𝑉𝑉𝑠𝑠+1 = 𝑉𝑉𝑠𝑠+1∗  

 
D-2 At odd time step 
 

• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠. Integrate ionic operator for full time-step: 
𝐶𝐶𝑚𝑚�̇�𝑉 = 𝐼𝐼(𝑉𝑉,𝑢𝑢)
𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑉𝑉,𝑢𝑢)
�  𝑉𝑉𝑠𝑠∗ 

With f described in [6] 
• Set 𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑠𝑠+1∗  
• Initialize 𝑉𝑉 = 𝑉𝑉𝑠𝑠. Integrate diffusion operator for one time-step: 
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(𝑀𝑀 +
𝑑𝑑𝑡𝑡

2𝛽𝛽𝐶𝐶𝑚𝑚
𝑆𝑆).𝑉𝑉𝑠𝑠+1 = 𝑀𝑀.𝑉𝑉𝑠𝑠 

 
Appendix E – Spiteri-Ziaratgahi Operator Split 
 

𝑢𝑢𝑠𝑠+1 = 𝑢𝑢𝑠𝑠 + 𝑑𝑑𝑡𝑡𝑓𝑓(𝑢𝑢𝑠𝑠,𝑉𝑉𝑠𝑠, 𝑡𝑡) 

�
𝛽𝛽𝐶𝐶𝑚𝑚
𝑑𝑑𝑡𝑡

𝑀𝑀 + 𝑆𝑆𝑖𝑖 𝑆𝑆𝑖𝑖
𝑆𝑆𝑖𝑖 𝑆𝑆𝑖𝑖𝑒𝑒

� . �
𝑉𝑉𝑠𝑠+1
𝑈𝑈𝑒𝑒𝑠𝑠+1

0
� = �

𝛽𝛽𝐶𝐶𝑚𝑚
𝑑𝑑𝑡𝑡

𝑀𝑀.𝑉𝑉𝑠𝑠 − 𝛽𝛽𝑀𝑀. 𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼(𝑢𝑢𝑠𝑠+1,𝑉𝑉𝑠𝑠, 𝑡𝑡)

0
� 

The block system is solved using a PCG method, where the preconditioner is the diagonal line of the matrix, or 
with the hybrid-parallel, multifrontal, sparse direct solver, MF2. 
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