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Abstract 
 
A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in 
the composite impact models currently available in LS-DYNA® is under development.  In particular, the material model, which is 
being implemented as MAT 213 into a tailored version of LS-DYNA being jointly developed by the FAA and NASA, incorporates both 
plasticity and damage within the material model and utilizes experimentally based tabulated input to define the evolution of plasticity 
and damage as opposed to specifying discrete input parameters (such as modulus and strength.  The plasticity portion of the 
orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure 
model into a generalized yield function with a non-associative flow rule.  The capability to account for the rate and temperature 
dependent deformation response of composites has also been incorporated into the material model.  For the damage model, a strain 
equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses.  In the damage model, a 
diagonal damage tensor is defined to account for the directionally dependent variation of damage.  However, the terms in the damage 
matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in 
all of the coordinate directions.  For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is 
defined as a function of the location of the current stress state in stress space to define the initiation of failure, which allows an 
arbitrarily shaped failure surface to be defined.  A wide ranging series of verification studies on a variety of composite systems has 
been carried out. 

 
 

Introduction 
 

As composite materials are gaining increased use in aircraft components where impact resistance is critical 
(such as the turbine engine fan case), the need for accurate material models to simulate the deformation, damage 
and failure response of polymer matrix composites under impact conditions is gaining in importance.  While 
there are several material models currently available within commercial transient dynamic codes such as  
LS-DYNA [1] to analyze the impact response of composites, areas have been identified where the predictive 
capabilities of these models can be improved.  Most importantly, the existing models often require extensive 
correlation based on structural level impact tests, which significantly limits the ability to use these models as 
predictive tools.  Furthermore, most of the existing models apply either a plasticity based approach (such as that 
used by Sun and Chen [2]) or a continuum damage mechanics approach (such as that used by Matzenmiller et al 
[3]) to simulate the nonlinearity that takes place in the composite response.  As documented in detail by 
Goldberg, et al [4, 5], either of these approaches can capture certain aspects of the actual composite behavior.  
However, optimally, combining a plasticity based deformation model (to capture the rate dependence and 
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significant nonlinearity, particularly in shear, observed in the composite response) with a damage model (to 
account for the changes in the unloading modulus observed as the material is unloaded from various stress 
levels, as well as to account for strain softening observed after the peak stress is reached) can provide 
advantages over using one approach or the other.  In addition, the input to current material models generally 
consists of point-wise properties (such as the modulus, failure stress or failure strain in a particular coordinate 
direction) that leads to curve fit approximations to the material stress-strain curves.  This type of approach either 
leads to models with only a few parameters, which provide a crude approximation at best to the actual material 
response, or to models with many parameters which require a large number of complex tests to characterize.  
An improved approach is to use tabulated data, obtained from a well-defined set of straightforward experiments.  
Using tabulated data allows the actual material response data to be entered in discretized form, which permits a 
more accurate representation of the actual material response. 
     To begin to address these needs, a new composite material model is being developed and implemented for 
use within LS-DYNA.  The material model is being implemented as MAT 213.  The material model is meant to 
be a fully generalized model suitable for use with any composite architecture (laminated or textile).  The 
deformation model is based on extending the commonly used Tsai-Wu composite failure model [6] to a strain 
hardening plasticity model with a non-associative flow rule.  For the damage model, a strain equivalent 
formulation is used in which the deformation and damage calculations can be uncoupled.  A significant feature 
in the developed damage model is that a semi-coupled approach has been utilized in which a load in a particular 
coordinate direction results in damage (and thus stiffness reduction) in multiple coordinate directions.  While 
different from the approach used in many existing damage mechanics models [3] in which a load in a particular 
coordinate direction only leads to a stiffness reduction in the load direction, this approach has the potential to 
more accurately reflect the damage behavior that actually takes place, particularly for composites with more 
complex fiber architectures. 
     A wide variety of failure models, which mark the end of the stress-strain curve, have been developed for 
composites.  In models such as the Tsai-Wu failure model [6], a quadratic function of the macroscopic stresses 
is defined in which the coefficients of the failure function are related to the tensile, compressive and shear 
failure stresses in the various coordinate directions.  This model, while mathematically simple and easy to 
implement numerically, assumes that the composite failure surface has an ellipsoidal (in 2D) or ovoid (in 3D) 
shape.  In reality, composite failure surfaces often are not in the form of simple shapes.  More complex models, 
such as the Hashin model [7], also utilize quadratic combinations of the macroscopic failure stresses, but utilize 
only selective terms in the quadratic function in order to link the macroscopic stresses to local failure modes 
such as fiber or matrix failure.  However, an overall quadratic form to the failure functions (albeit in a piecewise 
fashion) are still assumed.  This approach was extended in models such as those developed by Puck et al. [8], 
Pinho et al. [9] and Maimi et al. [10], in which complex equations were developed to predict local failure 
mechanisms in terms of macroscopic level stresses.  In this manner, the failure response and complex failure 
surfaces present in actual composites could be more accurately represented.  However, in these advanced 
models, very complex tests are often required to characterize the model parameters and the applicability of the 
models may be limited to specific composite architectures with specific failure mechanisms.  In a combination 
of approaches, researchers such as Mayes and Hansen [11] and Feng [12] utilize an approach where stress (or 
strain) invariants based on macroscopic stresses are used to define the initiation of failure.  However, different 
forms of the invariants are used to determine whether fiber-dominated or matrix-dominated failure occurs.  
Given the variety of failure models present in the literature, activities such as the World Wide Failure Exercise 
and its multiple iterations (e.g. [13], [14], and [15]) have attempted to conduct a rigorous review of which 
failure model or models provides the optimum prediction of composite failure.  In all of these studies, none of 
the examined models showed a complete ability to predict composite failure or displayed a significant 
advantage compared to the other models examined.   
     The difficulty in simulating composite failure can be related to the fact that in reality failure is a highly 
localized phenomenon dependent on various combination of fiber, matrix and interface failures.  Due to these 
complex and interacting local failure mechanisms, and the fact that these mechanisms can vary based on the 
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constituent materials and fiber architecture, in reality the actual composite failure surface often does not 
conform to a shape that can be easily simulated using a simple mathematical function.  Conversely, attempts to 
utilize discrete functions to analyze the complex local mechanisms can result in models with a large number of 
parameters that require a highly complex test program to obtain.  In the methodology described in this paper, an 
approach is used in which the actual experimental three-dimensional failure envelope for a composite is entered 
in a tabulated fashion.  Specifically, a stress or strain based invariant leading to the initiation of failure is 
defined as a function of the location of the current stress state in stress space.  In this manner, an arbitrary 
failure surface can be easily defined based on actual experimental data in combination with numerical data 
obtained using any desired existing failure model.  The current approach thus serves as a general framework 
which is not limited to any arbitrarily imposed failure surface based on an arbitrarily defined mathematical 
function. 
     In the following sections of this paper, a brief summary of the plasticity-based deformation model is 
presented.  The key aspects of the damage model and its characterization are then described.  Details of the 
failure model are then discussed, including the overall methodology and a sample of how it can be applied for a 
particular composite.  A detailed overview of the program that is being undertaken to verify and validate the 
MAT 213 material model will also be presented. 
 

Deformation Model Overview 
 

     A complete description of the deformation model is given in Goldberg et al [4, 5].  A summary of the key 
features of the model is presented here.  In the deformation model, a general quadratic three-dimensional 
orthotropic yield function based on the Tsai-Wu failure model is specified as follows, where 1, 2, and 3 refer to 
the principal material directions: 
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In the yield function, σij represents the stresses and Fij and Fk are coefficients that evolve and are functions 

of the current values of the stresses in the various coordinate directions.  By allowing the coefficients to vary, 
the yield surface evolution and hardening in each of the material directions can be precisely defined.  The 
values of the normal and shear coefficients can be determined by simplifying the yield function for the case of 
unidirectional tensile and compressive loading in each of the coordinate directions along with shear tests in each 
of the shear directions.  In the above equation, the stresses are the current value of the yield stresses in the 
normal and shear directions.  To determine the values of the off-axis coefficients (which are required to capture 
the stress interaction effects), the results from 45° off-axis tests (an arbitrarily chosen angle) in the various 
coordinate directions can be used.  The values of the off-diagonal terms in the yield function can also be 
modified as required in order to ensure that the yield surface is convex [5].   
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A non-associative flow rule is used to compute the evolution of the components of plastic strain.  The 
plastic potential for the flow rule is shown in Equation (2) below: 
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where σij are the current values of the stresses and Hij are independent coefficients, which are assumed to 
remain constant.  The values of the coefficients are computed based on average plastic Poisson’s ratios [4, 5]. 
The plastic potential function in Equation (2) is used in a flow law to compute the components of the plastic 
strain rate, where the usual normality hypothesis from classical plasticity [16] is assumed to apply. 

Given the flow law, the principal of the equivalence of plastic work [16] can be used to determine that the 
plastic potential function, h, can be defined as the effective stress and the plastic multiplier can be defined as the 
effective plastic strain rate.   

To compute the current value of the yield stresses needed for the yield function, tabulated stress-strain 
curves are used to track the yield stress evolution.  The user is required to input twelve stress versus plastic 
strain curves.  Specifically, the required curves include uniaxial tension curves in each of the normal directions 
(1,2,3), uniaxial compression curves in each of the normal directions (1,2,3), shear stress-strain curves in each 
of the shear directions (1-2, 2-3 and 3-1), and 45 degree off-axis tension or compression curves in each of the 1-
2, 2-3 and 3-1 planes.  The 45 degree curves are required in order to properly capture the stress interaction 
effects.  By utilizing tabulated stress-strain curves to track the evolution of the deformation response, the 
experimental stress-strain response of the material can be captured exactly without any curve fit 
approximations.  The required stress-strain data can be obtained either from actual experimental test results or 
by appropriate numerical experiments utilizing stand-alone codes.  The ability to account for rate and 
temperature effects has also been incorporated into the deformation model.  To track the evolution of the 
deformation response along each of the stress-strain curves, the effective plastic strain is chosen to be the 
tracking parameter.  Using a numerical procedure based on the radial return method [16] in combination with an 
iterative approach, the effective plastic strain is computed for each time/load step.  The stresses for each of the 
tabulated input curves corresponding to the current value of the effective plastic strain are then used to compute 
the yield function coefficients. 
 
 

Damage Model Overview 
 

The deformation portion of the material model provides the majority of the capability of the model to 
simulate the nonlinear stress-strain response of the composite.  However, in order to capture the changes in the 
unloading modulus observed as the material is unloaded from various stress levels and the local softening of the 
stress-strain response that is often observed in composites [17], a complementary damage law is required.  
Strain equivalence is assumed in the damage law formulation, therefore the total, elastic and plastic strains in 
the actual and effective stress spaces are the same for every time step [18].   The utilization of strain 
equivalence permits the plasticity and damage calculations to be uncoupled, as all of the plasticity computations 
can take place in the effective stress space.   

The first step in the development of the damage model is to relate the actual stresses to a set of effective 
stresses by use of a damage tensor M.  Given the usual assumption that the actual stress tensor and the effective 
stress tensor are symmetric, the actual stresses can be related to the effective stresses in the following manner, 
where the damage tensor M is assumed to have a maximum of 36 independent components: 
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In order to maintain a one to one relationship between the effective stresses and the actual stresses (i.e. to ensure 
that a uniaxial load in the actual stress space does not result in a multi-axial load in the effective stress space), 
the damage tensor is assumed to be diagonal  An implication of a diagonal damage tensor is that loading the 
composite in a particular coordinate direction only leads to a stiffness reduction in the direction of the load due 
to the formation of matrix cracks perpendicular to the direction of the load.  However, as discussed in detail in 
Goldberg, et al. [5], in actual composites, particularly those with complex fiber architectures, a load in one 
coordinate direction can lead to stiffness reductions in multiple coordinate directions.  To maintain a diagonal 
damage tensor while still allowing for the damage interaction in at least a semi-coupled sense, each term in the 
diagonal damage matrix should be a function of the plastic strains in each of the normal and shear coordinate 
directions, as follows for the example of the M11 term for the plane stress case: 

 
( )pppMM 1222111111 ,, εεε=                                                                       (4) 

 
Note that plastic strains are chosen as the “tracking parameter” due to the fact that, within the context of the 

developed formulation, the material nonlinearity during loading is simulated by use of a plasticity based model.  
The plastic strains therefore track the current state of load and deformation in the material. To explain this 
concept of damage coupling further, assume a load is applied in the 1 direction to an undamaged specimen.  The 
undamaged modulus in the 1-direction is 11E  and the undamaged modulus in the 2-direction is 22E .  The stress-
strain response of the material is assumed to become nonlinear (represented in the current model by the 
accumulation of plastic strain) and damage is assumed to occur.  The original specimen is unloaded and 
reloaded elastically in the 1-direction.  Due to the damage, the reloaded specimen has a reduced modulus in the 
1-direction of 11

11
dE .   The reduced area and modulus are a function of the damage induced by the loading and 

resulting nonlinear deformation in the 1 direction (reflected as plastic strain) as follows: 
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where 11

11d  is the damage in the 1-direction due to a load in the 1-direction.   Note that damage is only assumed 
to initiate once plastic strains have started to accumulate.  Alternatively, if the damaged specimen was reloaded 
elastically in the 2-direction, due to the assumed damage coupling resulting from the load in the 1-direction, the 
reloaded specimen would have a reduced modulus in the 2-direction of 11

22
dE .  The reduced modulus is also a 

function of the damage induced by the load and resulting nonlinear deformation in the 1-direction as follows: 
 

( )( ) 2211
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22 1 EdE pd ε−=                                                            (6) 
 
where 22

11d  is the damage in the 2-direction due to a load in the 1-direction.  Similar arguments can be made and 
equations developed for the situation where the original specimen is loaded in the 2-direction. 
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For the case of multiaxial loading, the semi-coupled formulation needs to account for the fact that as the 
load is applied in a particular coordinate direction, the loads are acting on damaged areas due to the loads in the 
other coordinate directions, and the load in a particular direction is just adding to the damaged area.  For 
example, if one loaded the material in the 2-direction first, the reduced modulus in the 1-direction would be 
equal to 22

11
dE .  If one would then subsequently load the material in the 1-direction, the baseline modulus in the 

1-direction would not be equal to the original modulus 11E , but instead the reduced modulus 22
11
dE .  These results 

suggest that the relation between the actual stress and the effective stress should be based on a multiplicative 
combination of the damage terms as opposed to an additive combination of the damage terms.  For example, for 
the case of plane stress, the relation between the actual and effective stresses could be expressed as follows: 
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where for each of the damage terms the subscript indicates the direction of the load which initiates the particular 
increment of damage and the superscript indicates the direction in which the damage takes place.  For the full 
three-dimensional case the actual stresses would be functions of damage parameters in all six coordinate 
directions. 
     To properly characterize the damage model, an extensive set of test data is required.  Due to the tabulated 
nature of the input, each of the damage parameters ( 22

11d , 22
11d , etc.) has to be determined as a function of the 

plastic strain in a particular coordinate direction (such as p
11ε ).   For example, to determine the damage terms for 

the case of loading in the 1-direction, a composite specimen has to be loaded to a certain plastic strain level in 
the 1-direction.  The material is then unloaded to a state of zero stress, and then reloaded elastically in each of 
the coordinate directions to determine the reduced modulus of the material in each of the coordinate directions.  
From this data, the required damage parameters can be determined.   
 
 

Failure Theory Overview 
 

     As discussed earlier in this paper, the majority of the available failure models utilize mathematical functions 
to describe the failure surface, which impose a specific shape on the failure surface.  An example of this concept 
can be seen in Figure 1.  In this figure, a two-dimensional failure surface in the σ11-σ22 plane for the case of zero 
shear stresses generated using the two-dimensional version of the classical Tsai-Wu failure model for a 
representative AS4/3501-6 polymer matrix composite is shown.  The properties used to generate the failure 
surface were taken from Daniel and Ishai [6].  Note that the actual failure surface is continuous but slight 
discontinuities are shown in the presented graphs due to numerical issues in the generation of the graph.  As can 
be seen in the figure, the failure surface is elliptical due to the quadratic nature of the equation defining the 
failure surface.  In reality, however, the failure surfaces of actual composites often do not exhibit this simple 
shape.  Many actual failure surfaces cannot be easily defined by a mathematical function of the stresses.  
Alternatively, as shown in Figure 1, one potential method of defining the points in the failure surface is to use a 
cylindrical type of coordinate system.  In this approach, a variable θ defines the relative location of the point on 
the failure surface in stress space, while a second variable r defines the “magnitude” of the failure surface point 
in the stress space location.  Since the relationship between “r” and “θ” also cannot be easily defined by a 
mathematical function for a realistic composite failure surface, a tabulated approach, where a series of “r” and 
“θ” pairs are explicitly defined for a given failure surface, can provide a more accurate representation of the 
failure surface.  The tabulated approach allows for the use of experimentally defined failure surface data, a 
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failure surface defined using any existing failure model, or a combination of experimental and numerically 
obtained “virtual” data.  The combined approach can allow for the case where actual failure data are only 
available for a portion of the total stress space, with “virtual” data being required to fill in the gaps in the failure 
surface. 
 

 
 

Figure 1:  Tsai-Wu failure surface for AS4/3501-6 composite. 
 
For the tabulated failure surface definition proposed in this study, appropriate independent and dependent 
variables need to be defined.  The independent variables need to define the location of a point on the failure 
surface in stress space, and the dependent variable needs to define the magnitude of the failure surface point 
along the lines defined by the independent variables.  For the current approach, the in-plane and out-of-plane 
responses will be considered separately.  First, the definition of the in-plane failure surface will be discussed.  
For the in-plane failure surface definition, two independent variables are defined.  The first independent 
variable will be the ratio of the shear stress to the shear failure stress.  For selected values of this shear ratio, the 
location of each defined point on the failure surface in stress space is specified by defining the angle of the point 
in the σ11-σ22 plane, as shown in Figure 1, which becomes the second independent variable.  Using simple 
geometric principals, the angle θ for each defined point on the failure surface can be defined in terms of the 
stresses σ11 and σ22 as shown below.  To ensure a set of unique, monotonically increasing angles from -180° to 
180°, if the stress σ22 is negative the computed angle is multiplied by -1 as shown below: 
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For the dependent variable, which is used to define the magnitude of the failure surface point given a particular 
location in stress space, a stress invariant first identified by Fleischer et al [19] is used, defined as follows for 
the plane stress case: 
 

    
2
12

2
22

2
11 2σσσ ++=r                                                         (9) 

 
This invariant can be considered to be like a “radius” from the origin to the failure surface.  The factor of 2 in 
front of the shear stress term reflects the symmetry of the stress tensor.  Stresses or strains can be used in 
defining the dependent variable, making the model more general.   Using an invariant type of term also allows 
for the stress interactions to be more appropriately accounted for in the failure definition and helps to ensure 
that the failure definition will be accurate for a variety of loading conditions.  One difficulty in using a tabulated 
approach of this type is that for many polymer matrix composites the failure surface is highly anisotropic due to 
the high failure strength in the fiber direction and the much lower failure stresses in the transverse direction.  If 
one were to scale the y axis of the graph shown in Figure 1 such that it was equal to the scale of the x axis, one 
would observe that the actual failure surface is highly elongated.  Due to the significant elongation of the failure 
surface, if one were to plot the radius versus the angle for the failure surface defined above, the majority of the 
points of the failure surface would be clustered at angles near -180°, 0°, and 180°.  This clustering would create 
round-off and interpolation difficulties in the numerical implementation of the failure model, making the current 
definition undesirable. 
 
To facilitate a more even distribution of the tabulated failure surface points along the entire spectrum of angles, 
the stresses used in the definition of the independent variable θ can be scaled.  For the current method, the 
stresses in the 11-direction are arbitrarily scaled by the longitudinal tensile failure stress, and the 22-direction 
stresses are scaled by the transverse tensile failure stress.  Revised angles are then computed using these scaled 
stresses.  The value of the dependent variable r, however, is still computed using the actual unscaled stresses. 
 
As mentioned earlier, for the proposed approach the procedure described above needs to be repeated for several 
ratios of the shear stress to the shear failure stress in order to fully define the in-plane failure surface.  As failure 
surfaces similar to that shown in Figure 1 are generated with higher shear stress values, one can observe that 
increasing the shear stresses results in a failure surface with the same shape as the surface generated assuming 
zero shear stresses, but the location of the failure surface is shifted somewhat towards the negative stress 
quadrant of the graph.  At high values of shear stresses, the failure surface may not even include the origin.  
Even when the origin is included, the fact that the failure surface is not centered on the origin may cause the 
angle calculations to be skewed.  If the failure surface does not include the origin, the angle calculations would 
not even be valid as they would not be unique.  To mitigate this issue, in the current approach the origin of the 
scaled failure surfaces for the selected shear stress ratios are redefined such that they lie in the center of the 
failure surface.  The modified center of each failure surface is then defined based on the maximum and 
minimum scaled stress values in the 11- and 22-directions.  
 
The angle calculations shown in Equation (8) are carried out using the revised stresses.  The radius calculations 
are carried out using the original, unscaled and unmodified stresses.  The radius versus scaled angle plot 
determined using the modified, scaled failure surface center is shown in Figure 2.  As can be seen in the figure, 
the tabulated points defining the failure surface are evenly distributed across the range of angles.  This data can 
easily be converted into a tabular format.  In the numerical implementation of the theory, for a particular stress 
state the angle and radius can be computed.  For the computed angle, if the radius is greater than the value of the 
radius at failure computed using the input failure data, the element is considered to have failed.  Note that for 
the full three-dimensional case where out-of-plane stresses are significant, similar calculations can be made 
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using the out-of-plane stresses, and the interactions between the in-plane and out-of-plane stresses can be 
specified by a combination of the two radius functions. 
 

 
 

Figure 2.  Plot of radius versus angle for scaled failure surface with modified center.   
 
 

Verification and Validation Plan 
 

     A systematic verification and validation plan is currently being carried out to exercise the material model for 
a number of material system with varying fiber architectures, including unidirectional composites, weaves and 
tri-axial braids.  First, a series of analyses are being carried out using a single element.  The first step in the 
single element analysis process is to replicate the loading conditions that were used to provide the input data for 
the material model, specifically uniaxial tension curves in each of the normal directions (1,2,3), uniaxial 
compression curves in each of the normal directions (1,2,3), shear stress-strain curves in each of the shear 
directions (1-2, 2-3 and 3-1), and 45 degree off-axis tension or compression curves in each of the 1-2, 2-3 and 
3-1 planes.  By examining the results from these analyses, the ability of the code to accurately replicate the 
input data will be determined.  By using single elements for this first set of verification and validation studies, 
complexities of the analysis caused by complicated boundary conditions, element interactions and edge effects 
can be avoided.  In analyzing a realistic structure, simple loading conditions such as uniaxial tension are not 
present in every element in the finite element model.  These simple single element analyses are the first step in 
assuring that the fundamental theory and numerical implementation of the code is correct, as a minimum 
requirement of a new material model should be that the input data can be replicated by analytical simulations.  
After the analyses of the single elements under simple loading are completed, the next step of the verification 
and validation process is to still analyze single elements, but to apply more complex loading conditions, such as 
combined tension and shear loadings, multiaxial tension or compression, and load/unload cycles.  By 
conducting these analyses, constant, controlled load conditions are still applied to the element, but by applying 
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multiaxial loading the capability of the material model to properly account for all of the stress interactions can 
be examined.  In this manner, the appropriateness of the theory and numerical implementation can be further 
verified.  After the single element analyses are completed, the next step in the verification and validation 
process will be to explicitly model the coupon tests which were used to generate the input data for the particular 
material being simulated.  By simulating the coupon tests, relatively simple loading conditions will still be 
applied to the finite element model, but the ability of the code to simulate structures under more realistic 
boundary conditions and stress/strain gradients will be determined.  Finally, various flat and curved panel 
impact tests are being simulated in order to validate the ability of the code to predict the impact response of 
composite structures under realistic impact loading conditions.  Since the material model was specifically 
designed to more accurately simulate the impact response of composites, the ability of the code to appropriately 
simulate the response of composite structures subject to realistic impact conditions is critical.  All of these 
verification and validation efforts are ongoing and will be documented in future reports.  
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