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Abstract 
 

The formulation, testing and numerical study of the Mullins effect on rubber are presented.  To 

demonstrate the Mullins effect experimentally, a biaxial test, inflation of a plane circular 

membrane, is used.  Some experimental test data are shown.  An approximate solution, a relation 

between the inflation pressure and the displacement at the center for the inflation of a plane 

circular membrane is presented.  The test data and the approximate solution are used to 

determine the Mullins damage material constants.  These constitution equations are implanted in 

LS-DYNA.  The numerical results from LS-DYNA and analytical results are shown.  They agree 

with one another. 
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Introduction 
 

Rubber mechanics has advanced greatly during the past sixty years.  Only a few analytical 

solutions were obtained before 1960.  Later Yang and Feng [1] used IBM360 computers to solve 

a set of nonlinear differential equations for the inflation of a plane circular membrane.  Feng and 

Huang [2] and Feng and Tielking [3] used UNIVAC 1108 to solve the inflation and contact of 

rectangular membranes. These were a few examples of using digital computers to solve finite 

deformation elasticity problems in earlier times. 

 

The constitutive equations for rubber mechanics have also advanced greatly during the past sixty 

years.  Sixty years ago, we had the Mooney [4] constitutive equation for incompressible 

materials only.  Later Ogden [5] extended the Mooney constitutive equation to more terms for 

incompressible, then to compressible materials.  Feng and Hallquist [6] further extended the 

Ogden formulation to viscoelasticity.  Feng [7] developed a large deformation failure criterion 

for anisotropic materials.  A failure criterion for isotropic rubber-like materials has been obtained 
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by Feng and Hallquist [8] as a special case.  Feng and Hallquist [9] also obtained another new 

constitutive equation for the aging of elastomers. 

 

Another new frontier, and an interesting one, of developing a constitutive equation for rubber is 

the Mullins effect where loading, unloading and subsequent reloading follow different paths.  

There is very little relaxation or creep; therefore, it is not a viscoelastic phenomenon. It is due to 

damage of the long molecular chains during loading.  Ogden and Roxburgh [10] first modelled 

the Mullins effect to study unloading in filled rubber.  It has been extended by Feng and 

Hallquist [11] to include the Mullins effect on both unloading and subsequent re-loadings.  The 

new constitutive equation simulates real rubber behavior better. In this paper, we have further 

extended it to biaxial formulation and testing.  Based on the biaxial test results and the new 

constitutive equation for the Mullins effect, the material constants are determined.  The test 

apparatus and the numerical method for determining these constants are presented in detail.  

These new constitutive equations are implemented in LS-DYNA.  For an equi-biaxial stretching 

of a cube, the results from LS-DYNA and the analytical results are the same. 

 

The constitutive equations obtained by Feng and Hallquist were all implemented in LS-DYNA.  

They also developed testing methods for studying the new material models and the numerical 

method for determining these material constants. 

 

More and more rubber and rubber-like materials have been used in engineering parts and our 

daily life, demanding more and more accurate modelling of these materials. Developments at 

Livermore Software Technology Corp. (LSTC) have kept up with this demand. 

 

 

Formulation 

 

The strain-energy density function with Mullins damage function of a rubber is  iW 
~

, and 

 

    ii WW  
~

         (1) 

 

where W  is the strain-energy density function based on the initial loading, and )(W   is a 

damage function for the Mullins effect. 
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The following damage function, a Cauchy first-order ordinary-differential equation, is chosen for 

this report 
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For subsequent reloading 






















mW

W

mrW
W 1

1
tanh

1
1

22




    (3c) 

 

 imW   is the maximum strain-energy density function before unloading. 1r , 2r , 1m  and 2m  are 

the material constants for the Mullins effect damage function.  With this damage function, the 

loading and subsequent unloading follow different paths.  For a loading with a value of the 

strain-energy density function greater than  imW  , the process repeats. 

 

For Mooney-Rivlin materials the strain-energy density equation is: 

 

         3333 2112211  IICICICW       (4) 

 

where 1C  and 2C  are material constants and 12 /CC .  The strain invariants 1I  and 2I  are 

written in terms of the principal stretch ratios 1 , 2  and 3  
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An incompressibility condition is assumed in the Mooney-Rivlin material constitutive equation 

so that  

 

 1321            (6) 

 

The Cauchy stresses (force per unit deformed area) are 
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and similar equations for 2t  and 3t  

 

For biaxial tension or compression in 1 and 2-directions 213 /1   . 

Hence,  
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Cauchy stress 1t  is related to the biaxial stretch ratio 1 .  
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An equi-biaxial stretching of a cube is shown in Figure 1. 

 

For equi-biaxial stress   21  and ttt  21  
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For unloading   
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For subsequent reloading  
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The result for equi-biaxial extension obtained from EXCEL calculations is shown in Figure 2.  

The material constants are: 

 

501 C , 1.0 , 8.01 r , 0.11 m , 5.02 r  and .52 m   

  

 
 

Figure 1. Equi-biaxial stretching of a cube 
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Figure 2. The Mullins effect for equi-biaxial loading, unloading and subsequent 

                              reloading, obtained from EXCEL. 

 

The formulation presented in this paper applies to one-, two- and three-dimensional problems.  

For general three-dimensional problems the mathematical formulation has been implemented in 

LS-DYNA.  

 
Figure 3. The results from LS-DYNA. 
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Figure 4. The stress-displacement plot from LS-DYNA. 

 

The result of a cube of 0.5x0.5x0.5 subjected to equi-biaxial extension is obtained from LS-

DYNA.  The displacement and the stress in the cube are shown in Figure 3.  The material 

constants used in the analytical study, Figure 2, are used in the LS-DYNA calculations.  The 

stress-displacement plot is shown in Figure 4.  The displacement can be converted to the stretch 

ratio  .  The results shown in Figure 2 from the analytical calculation and Figure 4 from LS-

DYNA are the same. 

 

Approximate Solution for Inflating a Circular Membrane 
 

The numerical solution for studying the inflation of a thin circular membrane, shown in Figure 5, 

has been obtained by Yang and Feng [1].  However, using the numerical method for determining 

the material constants will be cumbersome.  Here we used the approximate solution of inflating 

pressure and deformation at the pole, by Christensen and Feng [12], to determine the material 

constants 1C  and  .  The result of the approximate solution is outlined here.  The approximate 

relationship between the inflating pressure ( P ) and the deformation at the pole (  ) is 
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Figure 5.  Inflation of a plane circular membrane 

 

 

































































4

2

6

1 11
1

24




R

R

R

HC
P      (14) 

 

The relationship between  and  is 
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where R  is the initial radius and H  is the initial thickness of the circular membrane.  

 

These relationships can be extended to the inflation of a plane circular membrane with Mullins 

effect. 
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For unloading   
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For subsequent reloading  
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Biaxial Test 
 

 

 
 

Figure 6. The apparatus 

 

In the experiment a flat circular membrane of rubber was clamped between two plates as shown 

in Figure 6. The membrane is inflated by air or liquid from a reservoir at a constant temperature.  

The height of the deformed membrane at the pole is measured by a LVDT.  The pressure is 

measured with a pressure transducer.  The pressure-height relationship is measured, as shown in 

Figure 7.  The radius of the membrane is 2 inches and the thickness is 0.015 inches.  In the 

experiment, the membrane is inflated monotonically to 1.6 inches then deflated to the flat 

surface.  It is inflated again to 1.6 inches then deflated again for three cycles.  During the loading 

and unloading, the deformation, at the pole, is in a uniform biaxial stress state. 
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Figure 7. The test data for the pressure-height relationship 

 

Determining the damage constants 
 

The material constants can be obtained from test data and the least-square error minimization 

method.  At thi  datum, the measured displacement at the pole is  i , the measured pressure 

is   iP 
~

, and the calculated pressure based on Eqs. (16 -18) is   iP  .  Hence, the error 

between measured pressure ( P
~

) and the calculated pressure ( P ) at thi  data point is  

 

      iPiP 
~

         (19) 

 

For m data points, the sum of the square of errors is 
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


m

i
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By minimizing the sum of the squares of errors S , the material constants 
1C , , 1r , 1m , 2r  and 

2m  are determined.  They are three-decoupled minimization sets: 
1C , and  can be determined 

from the initial loading curve; 1r  and 1m  can be determined from the unloading curve; 2r  and 2m  

can be determined from the reloading curve.  The determined Mooney-Rivlin constants are: 51 C  

and 01.0 .  The determined Mullins damage constants are: 65.11 r , 35.01 m , 9.32 r  and 

4.02 m . The best-fit initial loading, unloading and reloading pressure-deformation curves are 

shown in Figure 8. 
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Figure 8.  The best-fit initial loading, unloading and reloading pressure- 

                                     deformation curves  

 

 
 

Figure 9.  The best-fit initial loading, unloading and reloading pressure- 

                          deformation curves and the test data 

 
The best-fit curves that show the Mullins effect and the test data are shown in Figure 9.  They 

agree with one another.  It also shows that the theory, the test and the numerical formulation 

work well.  

 

Future work 
 

The formulations and applications can be extended to various rubbers with strain-energy density 

represented by various constitutive equations such as: neo-Hookean, Mooney, Ogden 
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incompressible, and Ogden compressible materials.  It can also been extended to viscoelastic 

materials for compressible and incompressible viscoelastic materials subjected to very large 

deformation. 

 

We assumed that the Mullins damage function in this paper is represented by a hyperbolic 

tangent function; it can be changed to other functions if needed. 
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