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Abstract 
 

Traditional bulk failure models are based on the approach of continuum damage mechanics involving internal 

variables which are difficult to measure and interpret in simple physical terms. Alternative approach was proposed 

by Volokh [1-5], in which the function of the strain energy density was limited. The limiter enforces saturation – the 

failure energy – in the strain energy function, which indicates the maximum amount of energy that can be stored and 

dissipated by an infinitesimal material volume. The limiter induces stress bounds in the constitutive equations 

automatically.  

The work presents a numerical implementation of the energy limiter theory using the LS-DYNA
®

 user defined 

material.  This approach will be tested in few examples.  First, the FE subroutine is checked against a simple 

uniaxial tension case that can be solved analytically.  Next, we will model the Deegan-Petersan-Marder-Swinney 

(DPMS) experiments [6-7] for the dynamic fracture of rubber.  These tests use biaxial pre-stretched rubber sheets 

which are pricked at a point. The pricking initiates a crack which runs along the sheet.  We simulate these tests 

using the user defined subroutines of the hyper-elastic material models enhanced with energy limiters.  The 

numerical results regarding the crack shape and speed are compared to the test observations. 

 

1. Introduction 
 

There are few studies done on the modeling of actual failure and its propagation of rubberlike 

materials.  Theoretical studies for failure mostly focus on the description of deformation using 

the Linear Elastic Fracture Mechanics (LEFM) theory [8-9].  Theories based on LEFM ignore 

material and geometrical nonlinearities.   

Elastomers or rubberlike materials have unique properties: 

 Incompressibility: the bulk modulus is much higher than the shear modulus 

 Hyper-elasticity 

 Stiffening behavior around high stretches: caused by unfolding of long polymer 

molecules in the load direction (Figure 1).  This behavior is observed in a typical stress-

stretch diagram for a uniaxial test on rubberlike materials (Figure 2) 

 

 
Figure 1: Ilustration of the unfolding of long molecules in the load direction 
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Figure 2: A typical stress-stretch rubberlike behavior for a uniaxial condition 

 

The stress-stretch relation in Figure 2 represents a typical pattern for hyper-elastic models, where 

the stress has no limit for the increasing stretch. This is unrealistic, of course. Experimental data 

for uniaxial tension tests on natural rubber vulcanizate show existence of a critical rupture stretch 

around λcr≅7.0. 

 

The experimental calibration of damage in traditional theories is far from trivial.  It is difficult to 

measure the damage parameter directly.  The experimental calibration should be implicit and it 

should include both the damage evolution equation and the failure condition.  To overcome these 

difficulties Volokh [1-5] proposed a new approach for modeling rubber fracture based on 

elasticity with energy limiters.  This alternative theory presents the bulk material failure in a 

more feasible way than the traditional damage theories. 

 

Theory of hyper-elasticity with energy limiters is described in Section 2.  Numerical 

implementation of the theory using the LS-DYNA user defined material is given in Section 3. 

Section 4 uses the calibrated model for the simulation of DPMS experiments [6-7] for the 

dynamic fracture of rubber sheets.  Section 5 summarizes the work.  

 

2. Elasticity with Energy Limiters 

 
The hyper-elastic constitutive law is defined in the following general form [1-5] 

 





P
F

      (1) 

 

where   is the Helmholtz free energy (stored energy) per unit reference volume defined as 

follows 

 

( , ) ( ) ( )f eH     F F       (2) 

 

( )f e  1        (3) 

 

( ) 0e  F F       (4) 
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where f  and  ( )e F designate the constant bulk failure energy and the elastic free energy 

respectively; ( )H   is a unit step function, i.e. ( ) 0H z   if 0z   and ( ) 1H z   otherwise; 1  is a 

second-order identity tensor; and ...  is a tensor norm. 

 

The switch parameter  ,0    is defined by the evolution equation 

 , 0 0
e

f
H t


  



 
     

 
 ,     (5) 

where 0 1   is a dimensionless precision constant.  

 

The physical interpretation of (2)-(5) is straightforward: material response is hyper-elastic as 

long as the stored energy is below its limit, f . When the limit is reached, the stored energy 

remains constant for the rest of the deformation process, thereby making material healing 

impossible.  Parameter   is not an internal variable (like in Damage Mechanics); it functions as 

a switch: if 0   then the process is elastic and if  0   then the material is irreversibly 

damaged and the stored energy is dissipated.       

 

In order to enforce the energy limiter in the stored energy function, we use the following form of 

the elastic energy 

1 ( )
( ) ,

m
e

m

W

m m






 
  

 

F
F       (6) 

where 1( , ) s t

x
s x t s dt


     is the upper incomplete gamma function; ( )W F  is the stored energy 

of intact (without failure) material;   is the energy limiter, which is calibrated in macroscopic 

experiments; and m  is a dimensionless material parameter, which controls the sharpness of the 

transition to material failure on the stress-strain curve.  Increasing or decreasing m  it is possible 

to simulate more or less steep ruptures of the internal bonds accordingly. 

 

The failure energy can be calculated via (3) as follows 

1 ( )
( ) ,

m
f e

m

W

m m


 



 
   

 

1
1      (7) 

Substitution of (2), (6), (7) in (1) yields 

   exp
e m

m

W W
H H


 


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    
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    (8) 

Choosing as an example the Yeoh strain-energy function and using the experimental data found 

from Hamdi et al [8] for Natural Rubber (NR) vulcanizate we have 

 
3

1

1

3
k

k

k

W c I


        (9) 

 

where the material parameters 

1 2 30.298 0.014 0.00016c MPa c MPa c MPa     (10) 
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the energy limiter   = 79.9 MPa and the material parameter 10m   are deduced from the 

material failure at the critical stretch of 7.12cr  observed from the test. 

 

The Cauchy stress is determined by 

 
1

det T
 F PF      (11) 

 

The Cauchy stress - stretch curve for the NR model described by equations (8-11) is shown in 

Figure 3, where also the results are shown for the intact model where no failure exists (  ). 

 

 
Figure 3: Cauchy stress [MPa] versus stretch in uniaxial tension of NR: dashed line 

designates the intact model; solid line designates the model with the energy limiter 

 

Hamdi et al. [10] have also conducted biaxial tests up to rapture with the same rubber material 

used for the uniaxial test.  A comparison between the tests and the predicted theory results of the 

critical failure stretches, 1cr  and 2cr , for the biaxial case are presented in Figure 4. 

 
Figure 4: Critical failure stretches in biaxial tension 

 

The comparison of the numerical to the test results for the biaxial case shows a close 

resemblance, although the energy limiter used was found from the calibration to the uniaxial test. 
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3. LS-DYNA User Defined Material Implementation 
 

The simulations in our work are done by using the explicit dynamics version of the LS-DYNA 

finite element software [11]. User-defined subroutine of the hyper-elastic material model 

enhanced with the energy limiter are plugged in. The simulation process also includes the 

deletion of the failed elements based on a criterion and the LS-DYNA built-in commands. The 

deletion of elements from the mesh enforces dissipation computationally. This is important in 

dynamics where the elastic unloading can potentially lead to the healing of the failed material. 

By removing the failed elements from the mesh we prevent the healing and account for 

dissipation. 

 

The deletion of the elements occurs when the following failure criterion is obeyed: 

  0H         (12) 

Since we are dealing with the explicit method we cannot use the fully incompressible theory as 

presented and we slightly modify the strain energy function described in (2) in order to penalize 

volumetric changes: 

 3 3
ˆ 1 lnI I            (13) 

where 3 detI  C , and   and   are material constants.  Using the condition of zero residual 

stresses where   F 1 0  we can find the relation between the material constants. The FE 

subroutine is checked against analytical results of the uniaxial tension case. 

Using for example the Biderman strain energy model 

   
3

1 01 2

1

3 3
k

k

k

W c I c I


 
    
 
     (14) 

with material constants taken from Marckmann G, Verron E [12] 

1 0.208c MPa , 2 0.0024c MPa  , 3 0.0005c MPa , 01 0.0233c MPa   (15) 

The energy limiter   = 69.2 MPa is found assuming the critical stretch 7cr  , and the material 

parameter 10m   (a real uniaxial tension test is needed for exact values of these parameters). 

 

We have an excellent correlation between the analytical and numerical results for the Cauchy 

stress vs. stretch (Figure 5). 
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Figure 5: Cauchy stress vs. stretch in uniaxial tension. Left - analytical results, Right - LS-

DYNA results 

 

The discretization of the upper incomplete Gamma function -   included in the strain energy 

function in (6) and (7) is done by inserting written subroutines by Shanjie Zhang and Jianming 

Jin [13]. A comparison between numerical and analytical maximum value of the strain energy - 

 from (2) for different values of m  are presented in  

Table 1. 

 

  
Analytical Numerical (LS-Dyna) 

m [MPa] 

5 63.56 63.56 

10 65.86 65.86 

20 67.40 67.40 

100 68.84 68.84 

 

Table 1: Maximum  comparison for different values of m for uniaxial case 

 

The comparison shows an excellent fit with no difference in values (at least up to the second 

number after the decimal point). 

 

The evolution of the elastic energy - e  from (6), the failure energy f  from (7), the proposed 

strain energy function -  from (2), and the classical strain energy function W  from (14) are 

presented in Figure 6. 
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Figure 6: Different energy variables vs. stretch for the uniaxial tension case 

 

 

4. Simulating the Deegan-Petersan-Marder-Swinney (DPMS) Experiments 
 

We will now use the calibrated user defined subroutine for modeling multi degrees of freedom 

analysis. Propagation of cracks in natural rubber was investigated in DPMS experiments [6-7]. 

 

 
Figure 7: The experimental apparatus for biaxial stretching of rubber sheet [7] 

 

The experimental apparatus included the framework for the biaxial pre-stress of the rubber sheet. 

After stretching, the sheet is clamped by the inner frame and pricked at the point marked with 'x' 

(Figure 7).  The pricking initiates a crack which runs along the sheet.  DPMS tests made many 

interesting observations of the running crack.  Using a high speed camera, they measured the 

shape and velocity of the crack as function of the initial biaxial stretch value.  The reported speed 

of the running crack varies between 37 and 60 m/sec. 

 

For the numerical model of the DPMS experiments we use a rectangle with a thickness of 0.05 

mm which is the same thickness mentioned in the tests.  The length and width of the rectangle in 

the model are 39.6 mm and 11.5 mm accordingly (smaller than the actual dimensions in order to 

save CPU time).  We use one element to the thickness making a total of 112,640 Hexa (8 node) 

element (Figure 8).  The rectangle is fixed around the boundaries. 
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Figure 8: Mesh of the rectangular model 

 

We start with the Biderman model where the energy limiter is presented in section 3 (14-15). 

The chosen initial stretch values are 2.0x   4.0x   1 0.125z x y    . 

At the beginning of the analysis a line of a few elements is deleted (Figure 9) 

 

 

Figure 9: Initial elements deleted 
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After deletion of the initial elements, the crack propagates spontaneously (Figure 10) 

 
Figure 10: Numerical results of the crack at different durations from start 

 

The speed of the crack tip calculated from the results is 51 m/sec, showing a good correlation 

with the rate of crack tip speed reported in Petersan's tests (37 to 60 m/sec). 

A good correlation is also achieved for the crack tip shape (Figure 11). 

 

 
Figure 11: Snapshot of crack tip. Left - Petersan's tests. Right - numerical analysis 
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Displaying only the deleted elements (without any deformation) shows a straight line (Figure 

12). 

 
Figure 12: Deleted elements view – Biderman model 

 

Repeating the simulations for the material mentioned in section 2 in (9) and (10) for the Yeoh 

model (material constants in this case are stiffer), the speed of the crack is 81.7 m/sec and the 

crack shape shows a splitting nature (Figure 13)  opposed to the straight line in the previous 

example (Figure 12). 

 
Figure 13: Deleted elements view - Yeoh model 

 

Checking the mesh dependency on the behavior of the running crack we prepared 3 different 

mesh sizes for the model (Figure 14).  The same area of elements are initially deleted in all 3 

cases for the initiation of the crack 

 

 
Figure 14: Three different mesh size and initial deleted elements 
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Figure 15 is a snap shot of the crack 0.18 msec after initiation for the 3 mesh size options. 

 
Figure 15: Crack shape after 0.18 msec for 3 different mesh size 

 

The resulting running crack has almost the same speed for the 3 mesh types.  However, the 

deleted elements show different evolution paths. 

 

The dependency of the mesh size on the deleted elements is a well-known problem in using the 

FE method.  It occurs at the point where the stiffness becomes negative, which results in local 

straining that is dependent on mesh size. Future study is planned for the implementation of a 

suitable regularization method. 

 

5. Summary 
 

The general objective of this work is to advance the modeling of rubber fracture and to get new 

insights into the core problems of fracture mechanics based on the approach of elasticity with 

energy limiters [1-5].  This approach includes a description of a maximum energy that can be 

accumulated in an infinitesimal material volume.  The method is dramatically simpler than 

existing methods that include sophisticated approaches of damage mechanics involving internal 

variables. 

 

The simulations presented are done using the explicit dynamics version of the LS-DYNA finite 

element software.  User-defined subroutines of the hyper-elastic material models enhanced with 

the energy limiters are plugged in.  Although the energy limiter is found from the calibration to a 

uniaxial tension test, the prediction to a biaxial tension test has proved to be successful.  
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Using the user defined subroutine for simulating the running crack for the biaxial stretched 

rubber sheet conducted by DPMS tests [6-7] we have demonstrated the following: 

 Resemblance to the crack tip shape 

 Resemblance to the crack velocity 

 Crack speed is a function of the material model 

 Finer mesh has very small influence on the crack speed 

 Finer mesh changes the crack structure (regularization method is needed) 

 

It is hoped that the numerical simulations of the experiments will advance our understanding of 

the key issues on fracture, and enable improving the design of structural elements made out of 

rubber. 
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