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Abstract 
  
In this paper, four different numerical methods implemented in the large scale simulation code LS-𝐷𝑌𝑁𝐴® are 

evaluated to determine their abilities and limitations in fracture problems especially 3-d crack propagation 

problems. These methods are: Finite Element Method (FEM), Discrete Element Method (DEM), Element Free 

Galerkin (EFG) method and Extended Finite Element Method (XFEM). Their methodologies are briefly described 

and several numerical simulations are carried out and compared with experiment results. In some examples, 

fracture parameters are evaluated and mesh sensitivity is studied. Their potentials and limitations are discussed.   
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Introduction 
 

Finite element method (FEM) has been a powerful tool for modeling crack initiation, 

propagation and calculating fracture parameters. Contributions are continuously made to finite 

element method in the past few decades to improve its ability to handle complicated fracture 

problems. Meanwhile new methodologies have been proposed to deal with issues that standard 

FEM is hard to deal with. The ability of four different methods in LS-DYNA are evaluated in 

this paper: 

a) The Finite Element Method (FEM) 

b) The Discrete Element Method (DEM) 

c) The Element-Free Galerkin method (EFG) 

d) The Extended Finite Element Method (XFEM) 

Their methodologies are briefly explained and several simulations are carried out and compared 

to experiment results.   

 

Finite Element Method 
 

Three basic methods can be used in finite element code to simulate crack growth, including 

smeared crack approach, nodal release approach and delete-and-fill remeshing approach. A 

summary that describes these three methods can be found in [1].  In this study, fracture models 

were implemented in the DYNA3D code for 3-D crack growth simulations. The implemented 

fracture models have the capabilities of simulating automatic crack propagation in solid elements 

without user intervention. Fracture parameters are evaluated and various crack growth criteria 

are implemented.  

 

Evaluation of Fracture Parameters 
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In the finite element code DYNA3D, a 3-D crack is modeled with edges and surfaces of solid 

elements by a series of “sub-cracks” at the crack front (Fig. 1). Each sub-crack is defined by 

three nodes with the identification numbers 1, 2 and 3. For through thickness crack, the fracture 

parameters are taken as the average of the results obtained from all the sub-cracks it 

encompasses. The evaluated fracture parameters in this procedure include the stress intensity 

factors (𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼), energy release rates (𝐺𝐼 , 𝐺𝐼𝐼 , 𝐺𝐼𝐼𝐼), and crack tip opening angle (CTOA). 

 

Figure 1. Decomposition of a 3-D crack tip. [1] 

Stress intensity factors (SIFs) of the three fracture modes (see Fig. 2) are extracted at discrete 

nodes from the elastic solution [2] of a cracked geometry:  

 

(a) Mode I (opening mode) (b) Mode II (shearing mode) (c) Mode III (tearing mode) 

Figure 2. Three modes of fracture 
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Where E is the Young’s modulus;   is the Poisson’s ratio; and  is the Kolosov constant defined 

as 
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𝜅 = {

3 − 4𝜈,       𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛
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The total energy release rate, G, is the amount of energy released at the crack tip per unit area for 

the crack extension process. The expression is given as [3,3,3]: 

𝐺 = −
𝜕𝛱

𝜕𝑎
= −

𝜕(𝑈 −𝑊)

𝜕𝑎
= 𝐺𝐼 + 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼 (5) 

Where 𝛱 is the total potential energy per unit thickness; U is the strain energy of the structure 

per unit thickness; W is the work of the external tractions per unit thickness, and a is the crack 

length. The energy release rates are directly calculated from the stress intensity factors using the 

following relationships [4]: 

 
𝐺𝑖 =

1

𝐸′
𝐾𝑖
2 𝑖 = 1,2,3 (6) 

Where E is Young’s modulus, v is Poisson’s ratio, and 𝐸’ = 𝐸 (plane stress) or 𝐸’ = 𝐸/(1 − 𝑣2) 
(plane strain). 

For crack tip opening angle, it is evaluated based on sub-crack angles. In the simulation of 

uniform crack growth, the actual 3-D crack angle is considered as the average of all the sub-

crack angles.  

 

Implementation of the 3-D Crack Growth Criteria  

 

Where E is the Young’s modulus;   is the Poisson’s ratio; and  is the Kolosov constant defined 

as 
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The total energy release rate, G, is the amount of energy released at the crack tip per unit area for 

the crack extension process. The expression is given as [3,3,3]: 

𝐺 = −
𝜕𝛱

𝜕𝑎
= −

𝜕(𝑈 −𝑊)

𝜕𝑎
= 𝐺𝐼 + 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼 (8) 

Where 𝛱 is the total potential energy per unit thickness; U is the strain energy of the structure 

per unit thickness; W is the work of the external tractions per unit thickness, and a is the crack 

length. The energy release rates are directly calculated from the stress intensity factors using the 

following relationships [4]: 

 
𝐺𝑖 =

1
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2 𝑖 = 1,2,3 (9) 

Where E is Young’s modulus, v is Poisson’s ratio, and 𝐸’ = 𝐸 (plane stress) or 𝐸’ = 𝐸/(1 − 𝑣2) 
(plane strain). 

For crack tip opening angle, it is evaluated based on sub-crack angles. In the simulation of 

uniform crack growth, the actual 3-D crack angle is considered as the average of all the sub-

crack angles.  
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Implementation of the 3-D Crack Growth Criteria  

 

Several crack growth criteria have been implemented in the nonlinear explicit finite element 

code DYNA3D. These crack growth criteria include maximum principal stress based criterion, 

CTOA based crack growth criterion [5,6], SIFs-based criterion [7], and energy release rate based 

criterion [8]. The crack growth direction is predicted using formula proposed by [9]: 

 

𝜃0 = 2𝑡𝑎𝑛
−1

(

 
−2𝐾𝐼𝐼

𝐾𝑙𝑒𝑓𝑓 +√(𝐾𝑙𝑒𝑓𝑓)
2
+ 8(𝐾𝐼𝐼)2)

   (10) 

 

Discrete Element Method 
 

The Discrete Element Method (DEM) was proposed by Cundall (1979) [10] as a numerical 

method to describe the mechanical behavior of assemblies and discs, and each element is 

represented by a node at the element center. Interactions such as spring, damper and friction are 

built between discrete elements, and such assembly of microstructures will give it emergent 

macro properties like elastic modulus, material toughness and so on [11]. 

Recently DEM’s application on fracture simulation in dense materials is gaining popularity. 

Unlike FEM, DEM treats fracture as discrete approach: a successive break of bonds between 

particles, which allows for natural and realistic crack propagation [12]. Various criteria are 

available to predict the bond break. 

A simple criterion is maximum normal or shear force criterion [13-17]. When the normal and 

shear bond force reaches the rupture threshold, they will drop to zero and the bond fails. Fracture 

toughness 𝐾𝐼𝐶 and critical energy release rate 𝐺𝐼𝐶 based criteria were also developed [18]. Strain 

energy density (SED) criterion first proposed by Sih (1974) [5] is used in LS-DYNA. It works in 

a way that fracture happens when the strain energy density (𝑆) reaches a critical value (𝑆𝑐). The 

total critical strain energy density is taken as the gross area of the stress strain curve from 

uniaxial tensile test. 𝑆𝑣 and 𝑆𝑑 are calculated using equation (8~10) [19]. 

𝑆𝑣 =
1 − 𝑣

6𝐸
(𝜎1 + 𝜎2 + 𝜎3)

2 (11) 

𝑆𝑑 =
1 + 𝑣

6𝐸
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2 + 6(𝜏12
2 + 𝜏23

2 + 𝜏13
2 )] (12) 

𝑆 = 𝑆𝑣 + 𝑆𝑑 (13) 

Minimum time step for discrete element method 

 

Discrete element method is an explicit method so minimum time step is required to ensure that 

there is no penetration of the particles, otherwise the velocity of spheres will be too large to keep 

the system stable. A minimum time step used LS-DYNA is calculated based on the Cundall 

approach [20]: 
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𝑑𝑡 = 0.2𝜋√
𝜌(4 3⁄ )𝜋𝑟𝑠𝑝ℎ𝑒𝑟𝑒2

𝐸
[3(1 + 2𝑣]

𝑁𝑜𝑟𝑚𝐾
 (14) 

Where NormK is a stiffness penalty parameter defined in *control_discrete_element.   

 

Element Free Galerkin Method 
 

The Element Free Galerkin (EFG) method was developed by T. Belytschko [21]. He used the 

moving least square (MLS) interpolant and weight function to construct discrete system function 

in variation form. A detailed explanation about continuous or discrete MLS approximation can 

be found in [22]. In EFG method no element is needed since only a mesh of nodes and boundary 

condition is used to develop the Galerkin form. This gives it advantages when it comes to crack 

propagation problems: EFG method doesn’t need to remesh because crack growth is simply 

modeled by extending free surfaces [23].  

In the past two decades, large amount of developments is made to EFG methods. In 1995, T. 

Belytschko developed a coupled finite element-mesh free Galerkin method and obtained 

consistency and continuity at the interface between two methods [24]. This makes it possible to 

apply EFG method to only the fracture region while use finite element method in other regions, 

because the computation cost for EFG is higher than FEM. In 2001, P.A Klein et al developed 

the general formulation of the nodal force vector and tangent stiffness matrix for cohesive 

surface elements and apply these formulations to mesh-free representation of displacement field 

[RW.ERROR - Unable to find reference:211]. In LS-DYNA EFG method is used in combination 

with cohesive zone model [25]. MAT_185 Tvergaard and Hutchinson model [26] is used. This 

cohesive model defines a trapezoidal traction-separation law, as shown in Fig 3. Detailed 

information about formulation of this cohesive model can be found in LS-DYNA material 

manual *MAT185. 

 

Figure 3: LS-DYNA *mat_185 cohesive material traction-separation law 

 

Extended Finite Element Method 
 

Extended finite element method (XFEM) was developed to handle the discontinuity, singularity 

and high gradients field in standard finite element method (FEM) [27]. The basic idea of XFEM 
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is to add some enrichment functions to FEM’s polynomial space to handle the non-smooth 

properties so that minimum re-meshing is needed throughout the simulation. The enrichment 

function uses a concept of partition of unity (PU) [28,29]. A detailed description of PU concept 

can be found in [30,31]. Level set method is used to find open or closed interface in XFEM [32].   

Consider a d-dimensional domain Ω ∈ 𝑑, which is discretized by 𝑛𝑒𝑙 elements, numbered from 

1 to 𝑛𝑒𝑙. I is the set of all nodes in the domain, and 𝐼𝑘
𝑒𝑙 is the nodes of element k. 𝐼∗ ⊂ 𝐼 is where 

discontinuity happens. A standard XFEM approximation has a form [33] :  

𝒖ℎ(𝒙) =∑𝑁𝑖(𝑥)𝑢𝑖
𝑖∈𝐼

+∑𝑁𝑖
∗(𝑥)[𝜓(𝑥) − 𝜓(𝑥𝑖)]𝑎𝑖

𝑖∈𝐼∗

 (15) 

The second term in equation is the enrichment added to the FE formulation and 𝜓(𝑥) is called 

enrichment function, 𝑎𝑖 is additional nodal unknown. Equation 12 has Kronecker- δ property and 

its value becomes the same as FE formulation at nodes. A common choice of enrichment 

function is generalized Heaviside function [34]. Details about crack enrichment can be found in 

[28,35]. 

The implementation of XFEM into LS-DYNA code is described by [25]. It is also used in 

combination with cohesive zone model by Tvergaard [RW.ERROR - Unable to find 

reference:285].   

 

Numerical Simulations  
 

Steel specimen under tension 

 

A steel specimen under tension is simulated using FEM, DEM, EFG and XFEM in LS-DYNA. 

Fig. 4 and Table 1 shows the dimension of the specimen in accordance with ASTM E8 standard 

[36] with a unit 𝑚𝑚. The simulation is displacement controlled and a constant velocity (5𝑚𝑚/
𝑚𝑠) is applied the right end of specimen while the left end is fixed.  

AISC 4340 steel with elastic modulus 201 𝐺𝑝𝑎 and yield stress 710 𝑀𝑝𝑎 is used. Material 

model *MAT_PLASTIC_KINEMATIC is used to define the yielding point and give it a plastic 

behavior.  

 

Figure 4.  AISC 4340 steel tension specimen size illustration (ASTM E8 standard) 

Table.1 AISC 4340 steel tension specimen size specification 

Symbol W T R L A B C 

Value (mm) 12.5 2.64 12.5 200 60 50 20 
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The simulation using discrete element method is carried out using multiple mesh sizes and 

different nodes arrangements to see mesh sensitivity and influence of element arrangement 

(Table.2). The Stress strain curves are obtained and the regular coarse mesh result is compared 

with FEM, EFG and XFEM result.  

Table.2 Description of different DEM test groups 

Element arrangement Number of Elements 

Regular 3800 

Regular 30000 

Random 30000 

From Fig. 5 we can see the crack appears at the same location for cases with regular and random 

element spacing. When regular element arrangement is used, there is element exploding when 

fracture happens. Mesh sensitivity is observed in DEM although not obvious (Fig. 6(a)). Results 

from FEM, EFG, XFEM and DEM are close (Fig.6 (b)).     

 

(a) 

 

(b) 

Figure  5: Crack in discrete element model (a) regularly arranged elements (b) Randomly 

arranged elements 

 

Figure 6: (a) Mesh sensitiviy study for Discrete Element Method 
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Figure 6: (b) Stress-strain curve of different methods 

 

Crack growth of Aluminum 2024-T3 plate under uniaxial tension 

 

Gullerud et al. (1999) [6] presented the load-crack extension experimental data from five 2024-

T3 M(T) aluminum specimens tested at NASA-Langley. A tensile load is incrementally applied 

to the plate by displacement control and the load versus crack extension curve is measured. 

Opposite constant velocities (V) are imposed on both ends of the plate. The loading rate (𝑉/𝐿0) 
is taken as 0.25𝑠−1. All the four methods are used to verify the crack propagation vs. remote 

stress curve (Fig. 7).    

The material properties of 2024-T3 aluminum alloy used here is provided by [37]: an elastic 

modulus of 71400 𝑀𝑃𝑎 and a yield stress of 345 𝑀𝑃𝑎.  

The CTOA criterion is employed to predict the crack growth in FEM. The critical CTOA value 

is taken as 5.25 [37]. In discrete element model, only regular arrangement of elements is used to 

measure the crack length as it’s hard to determine crack tip location in a random arrangement 

model.  

For EFG and XFEM, the critical energy release rate 𝐺𝐼𝐶 = 9.47𝑀𝑃𝑎 ∙ 𝑚𝑚  is used for cohesive 

model. The load-crack extension curve for these three methods are plotted and compared with 

experimental results (Fig. 8). 
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Figure 7: Finite element (left) discrete element (middle) and XFEM (right) model of Alumimum 

plate 

 

Figure 8: Comparison of experimental and analytical load-crack growth response 
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Mixed-mode fracture of a central horizontal crack in a square plate 

 

A square plate with a central horizontal crack [38] is simulated (Fig. 9). The plate is subjected to 

mixed-mode loading of a normal stress y (mode I) and shear stress xy (mode II). Eight cases 

with different stress ratios are considered in this example (Table 3). Linear elastic properties are 

used: E = 210000 MPa, v = 0.28. The CTOA criterion is employed in the FEM model to activate 

crack advancement. The critical value is taken as 0.19. XFEM model is also created to compare 

the results. 

For an infinite plate with central crack under mixed-mode loading as shown in Fig. 9, the stress 

intensity factors (KI and KII) can be expressed in terms of the normal and shear stresses as 

follows [39]: 

𝐾𝐼 = 𝜎𝑦√𝜋𝑎 = 𝑠𝜎√𝜋𝑎 (16) 

𝐾𝐼𝐼 = −𝜏𝑥𝑦√𝜋𝑎 = −𝑡𝜎√𝜋𝑎 (17) 

Substituting KI and KII into equation (7) leads to the crack growth angle 0 prediction equation as 

follows: 

𝜃0 = 2𝑡𝑎𝑛
−1(−

𝑠

4𝑡
+
1

4
√(
𝑠

𝑡
)
2

+ 8) (18) 

Equation (15) is used here to compute the theoretical crack growth with the different ratios (s/t) 

of stress factors. The theoretical and simulated results are listed in Table 3 for comparison.  

Table 3. Crack growth angle under mixed-mode loading 

Case s t θ(Theoretical) θ(FEM) θ(XFEM) 

1 1 0.1 11.203° 11.375° 11.041° 

2 1 0.2 21.089° 21.401° 19.983° 

3 1 0.3 29.103° 29.623° 29.106° 

4 1 0.4 35.357° 35.898° 34.493° 

5 1 0.5 40.208° 40.607° 39.555° 

6 1 0.6 44.004° 44.243° 43.958° 

7 1 0.7 47.022° 47.918° 47.822° 

8 1 0.8 49.460° 49.068° 48.821° 

From table 3 we can see that the current implementation of the fracture model predicted the mix-

mode crack growth direction very well. 
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Figure 9: Plate with central horizontal crack under mixed-mode loading 

 

Mode one stress intensity factor  

 

SIF is evaluated using different methods in this section. To obtain the “static” KI, the traction is 

applied as a ramp load first and then kept constant after 1.0 millisecond for total of 2.0 

milliseconds simulation (Fig. 10).  

The specimen used in this model is a rectangular steel plate with a central crack. The specimen 

size is 8𝑚𝑚 × 16𝑚𝑚 × 1𝑚𝑚, and the crack length is 4𝑚𝑚. A traction  =  200 𝑀𝑃𝑎 is 

applied to both ends. The theoretical value of stress intensity factors can be found in [40]: 

𝐾𝐼 = 𝜎√𝜋𝑎𝐹(𝑎/𝑏) (19) 

For 𝑎/𝑏 = 0.5, 𝐹(𝑎/𝑏) = 1.1864. When 𝜎 = 200, 𝐾𝐼 = 200 × √2𝜋 = 593𝑀𝑝𝑎√𝑚𝑚 

 

Figure 10: Loading and specimen 
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Numerical value of SIF is calculated using equation (1~3). Mesh size is small enough so the 

numerical error is negligible. Relative error between numerical and theoretical value is 

calculated and tabulated in Table 4. EFG method gives smaller SIF value than theoretical, and 

there is 11.63% difference. All other methods give good result. 

Table 4. Stress intensity value calculated using different methods 

  SIF Relative Error 

FEM 576.77 2.70% 

DEM 601.05 1.40% 

EFG 523.85 11.63% 

XFEM 576.00 2.72% 

 

Crack propagation in vitreous biopolymer material 

 

Crack propagation in a biopolymer plate under tensile load is simulated in this section (Fig. 11). 

This experiment was done by [15] and simulated in LS-DYNA using DEM and XFEM. In DEM, 

discrete elements are arranged regularly and randomly to show the influence of element 

arrangement type on the crack path. Their crack shapes are compared to those in the experiment 

and theoretical values.  

 

Figure 11: Size of biopolymer plate [41] 

Three groups of specimen are crafted and center of hole is at different coordinates (𝑎, 𝑏) for 

different groups:   

 Case A: (3.34,3.30)𝑚𝑚 
 Case B:  (1.83,2.78)𝑚𝑚 
 Case C:  (0.60, 3.05) 𝑚𝑚 
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The experiment is displacement controlled at a rate of 40µm/s.  Material properties are taken 

from paper [15]. Elastic modulus is 𝐸 = 0.312𝐺𝑝𝑎, Poisson’s ratio is 𝑣 = 0.3and 𝜌 =

1.209𝑔/𝑚𝑚3 [42]. The mode 1 fracture toughness is 𝐾𝐼𝑐 = 0.49𝑀𝑝𝑎√𝑚 from paper [41].  

Two ways of comparison are provided: image analysis [41] and theoretical crack deflection 

function [43]. The theoretical equation for crack path is given in equation (17) and (18). The 

𝑎, 𝑏, 𝑟 values are illustrated in Fig. 12 

𝑦(𝑥) =  
𝑟2

2𝑏
[2 − 𝑡(2 + 𝑡 − 𝑡2)] (20) 

𝑡 =
𝑏 − 𝑥

√𝑏2 + (𝑎 − 𝑥2)
 (21) 

 

Figure 12: Theoretical crack shape in specimen 

Crack path shape for threes cases are shown in figure 13~15. For case b, both DEM and XFEM 

show a crack path that passes the hole, which is not the case in experiment and theoretical crack 

path. For case 𝑎 and c, both methods show similar path shape to experiment and show crack 

branching. However, when the elements are regularly arranged in discrete element model, it’s 

not able to capture the crack direction and crack branching (Fig. 16).   

 

(a) (b) (c) (d) 

Figure 13: Case A (a) DEM (b) XFEM (c) Theoretical crack path (d) Crack path from [15] 
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(a) (b) (c) (d) 

Figure 14: Case A (a) DEM (b) XFEM (c) Theoretical crack path (d) Crack path from [15] 

 

(a) (b) (c) (d) 

Figure 15: Case A (a) DEM (b) XFEM (c) Theoretical crack path (d) Crack path from [15] 

 

Figure 16: Crack path in regular discrete element arrangement  

 

Crack propagation analysis of rock like Brazilian disc 

 

In this simulation, a rock disc with a pre-crack compressed by a line load is modeled. There is a 

pre-crack in the disc center with a length of 2𝑏 = 10𝑚𝑚, and arranged with an angle 𝜑 from 𝑦 

axis. Four different tests are done and 𝜑 is taken as 0°, 30°, 60°, 90° respectively for each test. 

Disc specimens have a radius of 42𝑚𝑚 and thickness of 25𝑚𝑚 (Fig. 17). Experimental test is 

done by Hadi [44]. The specimens are loaded till failure and different crack shapes can recorded.  
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Figure 17: Rock disc specimen with initial crack [44] 

Material properties used here are [44]: 𝐸 = 15𝐺𝑝𝑎, 𝑣 = 0.21, tensile strength 𝜎𝑡 = 3.81𝑀𝑝𝑎, 

and fracture toughness 𝐾𝐼𝐶 = 2 𝑀𝑃𝑎 ∙ 𝑚
1/2. Simulation is done using EFG method, the 

maximum load during the test is 16𝐾𝑁, which agrees well with the experiment result. 

Comparison between simulation and result crack paths are shown in figure 18~21. The crack 

shape looks similar but the element deletion method makes it hard to visualize as more elements 

are deleted.   

 

(a) Crack propagation path in EFG result    (b) Experiment result  [44] 

Figure 18: Crack shape when 𝜑 = 90° 
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(a) Crack propagation path in EFG result    (b) Experiment result  [44] 

Figure 19: Crack shape when 𝜑 = 60° 

 

(a) Crack propagation path in EFG result  (b) Experiment result  [44] 

Figure 20: Crack shape when 𝜑 = 30° 

 

(a) Crack propagation path in EFG result    (b) Experiment result  [44] 

Figure 21: Crack shape when 𝜑 = 0° 

 

Conclusion 
 

Four numerical methods are discussed and their capability in LS-DYNA is evaluated. It is 

concluded that these implementations work well for 3-d crack propagation when proper criterion 

or algorithm is chosen. DEM, EFG and XFEM show their ability to predict fracture parameters 

and crack path. However, these three relatively new methods still have their limitations for ease 

of use and generality to perform fragmentation simulations. For DEM, regularly spaced element 

arrangement cannot predict crack direction right and cannot capture crack branching. For EFG 

method, mixed mode crack propagation still needs to be incorporated and its accuracy in 

predicting stress intensity factors still need to be checked. For XFEM, only 2D analysis is 

available in LS-DYNA.  
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