Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

A Complementary Experimental and Modeling Approach for the Characterization of Maple and Ash Wood Material Properties for Bat/Ball Impact Modeling in LS-DYNA

To assist in developing LS-DYNA finite element models of wood baseball bats that can be used to explore the relationship between bat profile and bat durability, an experimental program was conducted to characterize the mechanical behavior of maple and ash woods for the range of densities used to make major-league quality baseball bats. The test program included four-point bend testing to determine the elastic moduli and breaking strength and Charpy impact testing to determine strain to failure as a function of strain rate. The MAT_WOOD material was used to describe the mechanical behavior of the wood, and the input parameters were calibrated by comparing the results of LS-DYNA finite element simulations of the Charpy tests to the experimental test data. This paper describes the experimental characterization program, summarizes the material parameters and presents a comparison of the finite element simulations of the Charpy testing and bat/ball impacts to experimental results.