
14
th

 International LS-DYNA Users Conference Session: Computing Technologies

June 12-14, 2016 1-1

Improvements for Implicit Linear Equation Solvers

Roger Grimes, Bob Lucas, Clement Weisbecker

Livermore Software Technology Corporation

Abstract

Solving large sparse linear systems of equations is often the computational bottleneck for

implicit calculations. LSTC is both continuously improving its existing solvers, and continuously

looking for new technology. This talk addresses both, describing improvements to the default

distributed memory linear solver used by LSTC as well as promising new research. We discuss

improvements to the symbolic preprocessing that reduce the occurrences of sparse matrix

reordering, a sequential bottleneck and significant Amdahl fraction of the wall clock time for

executions with large numbers of processors. Our new approach works for large Implicit

models with large numbers of processes when the contact surfaces do not change, or only

change slightly. We have also improved the performance of numerical factorization, most

significantly with the introduction of a tiled, or two-dimensional distribution of frontal matrices

to processors. This improves the computational efficiency of the factorization and also reduces

the communication overhead. Finally, we present promising early results of research into using

low-rank approximations to substantially decrease both the computational burden and the

memory footprint required for sparse matrix factorization.

Reusing the Matrix Reordering and Symbolic Factorization

Solving a sparse linear system by factoring usually proceeds in four phases. In the first phase, the

matrix is reordered to reduce the storage and operations that will be required to factor it. The

second phase is a symbolic factorization, in which the elimination tree is created, and

the numerical data structures are initialized. The third phase is the sparse factorization itself. And

finally, solutions can be obtained by forward elimination and backward substitution.

Reordering to reduce fill-in and operations is a critical operation in sparse matrix factorization.

Finding the optimal ordering, one which strictly minimizes storage or operations is provably NP-

hard, so heuristics are used. The default used for large problems in LS-DYNA
®
 is Metis, a

weighted nested dissection based code.

Historically, reordering and symbolic factorization took relatively little time compared to

factorization. However, parallel scaling of the factorization phase has been studied for over three

decades, and substantial progress has been made, whereas reordering remains a largely

Session: Computing Technologies 14
th

 International LS-DYNA Users Conference

1-2 June 12-14, 2016

sequential process. As LS-DYNA is run on increasingly large numbers of processors, the time

for reordering has emerged as the dominant aspect of many problems. A relatively small

example is the one million element NCAC Silverado model. Running on a 16-core workstation,

reordering and symbolic factorization takes 23 seconds whereas sparse matrix factorization takes

only 15. An LS-DYNA implicit user reported that on a larger, proprietary model, reordering and

symbolic preprocessing took 1917 seconds, while factorization, running on 768 cores, took only

142. Over a simulation with hundreds of implicit time steps this represents a huge potential

reduction in execution time.

LSTC is working on addressing the reordering problem with a new scalable algorithm. But even

when that is available, we will want to minimize the number of times that we reorder the matrix.

Towards that end, we have modified the code that permutes and redistributes the input matrix to

allow it to use a previous ordering. If off-diagonal coefficients are dropped from the matrix, they

are simply filled in as zeroes. If new off-diagonal coefficients are added to the matrix, then we

have to check to see if they are consistent with the previous symbolic factorization. If they are,

the previous ordering is reused, even though it is likely suboptimal, and reordering is avoided.

The important key to reusing the reordering is predicting any additional nonzeroes added to the

stiffness matrix due to slight changes in contact. Consider the following model. As the blade

moves outward due to centrifugal forces the blade slides slightly outward. If we can predict this

slight change and add appropriate terms in the stiffness matrix the reordering can be reused. The

ability to activate this new feature is on the new keyword

*CONTROL_IMPLICIT_ORDERING.

Figure 1

Savings from reusing the sparse matrix reordering can be significant. But the savings is only for

large models using both many processes MPI and many implicit time steps where the reordering

can be reused.

14
th

 International LS-DYNA Users Conference Session: Computing Technologies

June 12-14, 2016 1-3

Performance Improvements to the Numerical Factorization

Research into parallel multifrontal codes goes back to the early 1980s, and distributed memory

multifrontal codes were first implemented in 1986. LSTC has been using distributed memory

versions of the multifrontal method since the introduction of scalable implicit processing at the

turn of the century. We use a subtree-subcube technique to distribute the branches of the

elimination tree to different processors. Near the root of the tree, where there are more

processors than supernodes, then multiple processors are assign to the factorization of each of

these MPP frontal matrices.

When the code for the MPP frontal matrices was first written, large-scale implicit users had

O(10) processors. Designing to scale well to 32 seemed to provide plenty of head room for future

growth. It was known in the mid-1980s that distributing the matrix by columns could scale to

100 processors. Furthermore, this one-dimensional distribution localizes evaluation of the ratio

of each diagonal value to its off-diagonals, which is needed to determine if pivoting is required.

Therefore, LSTC has been using 1D MPP frontal matrices for nearly two decades. Even for jobs

with over 100 processors, where performance could tail off for the supernodes near the root of

the elimination tree, their children or grandchildren would benefit from additional processors,

and the overall factorization would speed up.

Today, given the exponential growth in the number of cores that we are experiencing, LS-DYNA

jobs are now running on thousands of cores. To enable sparse matrix factorization to continue to

scale, LSTC has had to add a new generation of tiled, or two-dimensional frontal matrices. The

processors are organized into a N by M Cartesian grid, where N*M is less than, or equal, to the

number of processors. The frontal matrix is then distributed across the 2D grid of processes.

When the factored pivot columns are distributed, there are N simultaneous MPI broadcasts, each

amongst M processors. Each of these broadcasts transmits 1/N the amount of data a 1D broadcast

would convey. A down side is that pivot rows also have to be broadcast, but surprisingly, the 2D

factorization kernel can be faster than the 1D kernel on as few as 4 processors using a 2 by 2

grid.

Figure 2 depicts the relative performance of 1D versus 2D kernels factoring a simulated

symmetric frontal matrix. The plateaus in the 2D curve reflect processor totals that don't map to a

two-dimensional grid, with an acceptable aspect ratio. Examples are 13 and 14, which are turned

into a 3 by 4 grid, with the extra processors idled. Forming the 2D frontal matrices is more

complicated than their 1D counterparts, so LS-DYNA doesn't switch to 2D unless there are at

least eight MPI ranks assigned to the supernode.

As more and more cores are brought to bear, the advantage of 2D frontal matrices increases. Of

course, the vast majority of supernodes in the elimination tree are assigned to individual

processors, and their throughput is unchanged by the 2D kernels. Still, the frontal matrix of the

root supernode is disproportionately large, so the overall impact is still significant. Consider a 3D

implicit model supplied by an LS-DYNA user, which requires 10.57 quadrillion (10^15) floating

point operations to factor. When run on all 128 cores of an 8-node, dual-socket, 8-core cluster,

constraining LS-DYNA to 1D frontal matrices requires 7124 seconds for the first factorization.

Enabling 2D frontal matrices brings that down to 4931 seconds. The root supernode had 137259

equations, and 1D throughput was 754 Gflop/s whereas 2D throughput was 1862 GFlop/s.

Session: Computing Technologies 14
th

 International LS-DYNA Users Conference

1-4 June 12-14, 2016

<<<< a chart goes here but I cannot get it to stay >>>>>>

Figure 2

Block Low Rank Approximation

There is no limit to the imagination of LS-DYNA users, and the size and complexity of the

analyzes they need to perform. Unfortunately, sparse matrix factorization scales superlinearly,

both in terms of memory and operations. This scaling threatens to be a constraint on the ability of

LS-DYNA users to achieve their objectives. To address that, LSTC is examining the use of block

low rank approximations (BLR) to the factors of the matrix.

Over the past twenty years, many theoretical studies have been carried out on data-sparse

algorithms. They allow for algebraically compressing the numerical data involved in linear

systems by taking advantage of the properties of the underlying elliptic operator, at the price of a

controllable loss of accuracy. This process transforms a dense block into a product of much

smaller blocks: the low-rank representation. These blocks, in turn, allows for faster matrix-

matrix products when they are combined.

Many low-rank representations have been proposed in the literature. Some of them are recursive

(the so-called hierarchical representations) and obtained through complex compression

algorithms. Even though theory has shown that this is the most efficient kind of representations,

they are often not flexible enough to be used in pre-existing modern, parallel, fully featured

direct solvers. For this reason, simpler representations have been designed in order to

compromise between efficiency, ease of use and numerical stability. The Block Low-Rank

(BLR) format has been shown to fulfill these requirements and it is implemented in a research

version of the multifrontal solver MUMPS. A BLR representation of a dense block is obtained

through a rank-revealing factorization and consist of a product of a tall and skinny matrix with a

short and wide matrix. The classic multifrontal algorithm has to be adapted to handle BLR

blocks in a way that pays off in as many stages of the factorization, both in terms of memory

footprint and operation count.

MUMPS BLR is coupled to LS-DYNA as a research tool to evaluate the potential of low-rank

technologies on our implicit problems. Preliminary studies have shown promising results both in

terms of performance and accuracy. On a 100x100x100 rubber simulation problem (yielding

a linear system of 3 millions of unknowns), the size of the factors is reduced by a factor of 2,

and the number of operations to perform the factorization is reduced by 5. Because operations on

low-rank blocks are of smaller granularity, they are also slower. Consequently, the operation

reduction translates to a speed-up of only 2 for the overall factorization CPU time, including the

overhead due to low-rank compressions. Another decisive property of this new approach is that

the larger the problem, the better the relative efficiency of the low-rank approach. For instance,

on the same problem but with a 50x50x50 model, the operation count was reduced by a factor of

4 instead of 5 for the larger equivalent model.

14
th

 International LS-DYNA Users Conference Session: Computing Technologies

June 12-14, 2016 1-5

Summary

LSTC is continuously improving LS-DYNA, adding new capabilities. It is also addressing the

impact on existing software of changes in the computing platforms available to our users. This

talk highlighted three examples of this process, applied to multifrontal linear solvers. We have

reduced the need to reorder the sparse matrix when small changes are made to the model.

We have developed a new frontal matrix factorization kernel, that exploits MPI Cartesian meshes

to reduce communication overheads and improve load balance. And finally, we are exploring the

utility of block low rank approximations, which offer the promise substantial reductions in the

storage and operations required to solve a sparse linear system of equations.

