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Abstract 
 

The effectiveness of studying inter-laminar delamination in composites with the help of newly formulated 

thickness-stretch shell elements (ELFORM=25) as compared to the traditional plane-stress shell elements 

(ELFORM=2) has been investigated using LS-DYNA
®

. A strain-rate dependent micro-mechanical material model 

using ply-level progressive failure criteria has been used to simulate the initiation and propagation of delamination. 

The numerical delamination growth has been qualitatively analyzed against the experimental C-scan images for 

multiple impact events on a T800H/3900-2 CFRP plate. As an addition to the capability of the micro-mechanical 

material model, a methodology of assigning physical significance to the choice of damage parameters has been 

presented.  
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1. Introduction 

 
Delamination is an inter-laminar failure mode that is critical in characterizing the overall 

response of Uni-Directional Composites (UDC). Predicting delamination failure accurately in 

LS-DYNA using standard shell element formulations is a challenge as this failure mode is 

dependent on the stresses in the through-thickness direction.  

Historically, LS-DYNA [1] has only permitted the use of standard shell element formulation 

where the Z-Stress is zero. However, recently developed ‘thickness-stretch’ shell formulations 

(ELFORM = 25, 26) which utilize 3D constitutive models are believed to simulate the 

delamination behavior more accurately because of the presence of a non-zero Z-stress. In the 

current work, this behavior has been tested using a strain-rate dependent micro-mechanical 

constitutive model [3] with progressive post-failure criteria and is implemented as an UMAT 

(user-material model) in LS-DYNA. The nonlinear, strain-rate dependent behavior of the resin in 

this model is captured using the modified Goldberg-Stouffer visco-plastic constitutive relations 

[4]. As discussed in [5], it is well known that the strain softening damage parameter which 

accounts for the progressive post-failure behavior of the composite is difficult to determine. 

Hence, a procedure of characterizing the damage variables from the strain energy released is 

discussed. 

The current paper is organized as follows: section 2 discusses the theory behind the micro-

mechanics of the uni-directional composite material model. Section 3 presents a parameter 

estimation procedure for the damage variables. Section 4 compares the delamination results with 

the experimental results from Williams and Vaziri et al. [2]. Lastly, section 5 concludes with the 

learnings from this work. 
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2. Micro-mechanics of the uni-directional composite (UDC) 
 

The representative volume cell (RVC) used to develop the micro-mechanical relations is 

shown in figure (1). The current RVC is the same as the one discussed by Tabiei and Babu [3]. 

However for completeness the micro-mechanics relations are briefly discussed here. The fibers 

are assumed to be of square cross-section for computational efficiency since this model is 

implemented in an explicit FE code which uses very small time steps for simulations. The unit 

cell is divided into three sub-cells: one fiber sub-cell, denoted as f, and two matrix sub-cells, 

denoted as MA and MB respectively. The three sub-cells are grouped into two parts: material part 

A consists of the fiber sub-cell f and the matrix sub-cell MA, and material part B consists of the 

remaining matrix MB. The dimensions of the unit cell are 1 × 1 unit square. The dimensions of 

the fiber and matrix sub-cells are denoted by Wf  and Wm respectively as shown in figure (1) and 

defined as shown below: 

                                            ff VW  ;     fm WW 1                                               ….. (1) 

where, Vf is the fiber volume fraction. As explained in section 2.5 below, effective stresses in 

the RVC are determined from the sub-cell values in two phases: first, stresses in fiber f and 

matrix MA are combined to obtain effective stresses in part A which are then combined with 

stresses in matrix MB to obtain the effective RVC stresses. 

 
Figure (1): A representative volume cell of unidirectional fiber reinforced polymer composite 

 

2.1. Viscoplastic Constitutive Relations for Matrix Material 
 

The strain rate dependent behavior of a polymer matrix composite is mainly attributed to the 

viscoplastic nature of the resin component. Hence, strain-rate dependency is incorporated in the 

current model by using the viscoplastic relationship developed by Goldberg and Stouffer [4] for 

the matrix constituent (sub-cells MA and MB). Goldberg and Stouffer developed this constitutive 

relationship for resins using the state variable approach and used it in their material model for 

unidirectional composites. They defined their state variable as an internal stress, which evolved 

with stress and inelastic strain and represented the average effects of the deformation 
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mechanisms. For completeness, the Goldberg-Stouffer relations are discussed briefly in this 

section. Further details about the relations can be found in [4]. 

The total strain rate is assumed to be the sum of elastic and inelastic strain rates. The elastic 

strain rate is equal to the ratio of stress rate to Young’s modulus of the material while the 

inelastic strain rate is defined to be proportional to the exponential of the overstress, the 

difference between the applied stress and the tensorial internal stress state variable. It is given by 

the relation: 
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where 
I

ij
 , ij  are the components of inelastic strain rate, and internal stress respectively, 

0D  is a scale factor representing maximum inelastic strain rate, n  is a variable which controls 

rate dependence of the deformation response, 
0Z  represents the isotropic, initial hardness of the 

material before any load is applied, ijS  are components of the deviatoric stress tensor given by 

the relation: 
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where, ij  are the components of stress, and ij  is Kronecker’s delta. 2K  in equation (2) is 

defined as an effective stress given by the relation: 

                                                         ijijijij SSK 
2

1
2                                             ….. (4) 

and represents the second variant of the overstress tensor. The procedure for determining the 

resin material constants can be found in [4]. 

The internal stress rate is given by the relation: 
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where ij , ij , and 
I

ij  are components of internal stress, internal stress rate, and inelastic 

strain rate respectively and 
I

e  is effective inelastic strain rate given by the relation: 
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It is to be noted that equations (2) through (6) actually formulate one differential equation per 

component of the tensorial parameters involved or one first order tensorial differential equation 

which has no closed form solution. Hence, a numerical solution is obtained at each time step of 

the explicit FE simulation by integrating using the 4
th

 order Runge-Kutta method. 

 

2.2. Constitutive Relations of Fibers 
 

The fibers are assumed to be linearly elastic materials which are initially transversely 

isotropic but become orthotropic with damage evolution. It is assumed that damages to the fibers 

are a result of direct stresses applied on them only and that shear stresses do not cause any 
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damages. The damages are assumed to be oriented in the material directions of the fibers and 

independent. The constitutive relations of the fibers can be written in matrix form as:  

                                                               f

f

f
C                                                         ….. (7) 

where,  fC  is the stiffness matrix which can be partitioned into direct and shear stress 

stiffness matrices as follows: 
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The direct stress compliance matrix, whose inverse is the direct stress stiffness matrix, should 

be symmetric and the following relationship should be obeyed:  
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The direct and shear stress compliance matrices in terms of the properties of the fibers are: 
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where 1E , 2E  are the longitudinal and transverse moduli of the fibers respectively, ij , 

3,2,1, ji  and ji  , are its Poisson’s ratios, 12oG , 12G  are its initial and strain-rate dependent 

in-plane shear moduli respectively, 23G  is its transverse shear moduli, and id , 3,2,1i , are 

damage parameters given in the following section on progressive failure modeling. In-plane 

shear is considered as a parameter which is strain-rate dependent. Hence, the shear modulus 12G  

is given by the following relation: 

                                                    1212 osG GsaG                                                      ….. (12) 
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where Ga  is a parameter which expresses the strain-rate sensitivity of 12G , t  is the time 

elapsed, 12oG  is the initial in-plane shear modulus of the fibers, 12  is the in-plane shear strain-

rate, o  is a basic strain-rate with which the current strain-rates are compared and is accepted as 

the strain-rate of the static loading for a given working strain-rate range.  A time integration of 

the strain rates is deemed necessary as they are not constant in impact simulations and also 

because the stress-strain relationship for the fibers is based on their secant stiffness and not the 

tangential stiffness.  
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2.3. Damage Evolution in Constituents 
  

In the current model, damage growth is based on a Weibull distribution of strengths which is 

commonly associated with the strength of fibers. The evolution function for damage describing 

fiber breakage at time step n + 1, is expressed as follows:  
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where, t|c denotes tension or compression. When 011  , the parameters for tension are 

utilized otherwise the parameters provided for compression are used. When the damage d1 

reaches 0.01 in tension, the finite element is considered totally failed. ct|1  is not simply the 

strength of the fibers but is a reduced value given by the relation: 
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where, ctX |  is the tensile/compressive strength of the pure fibers, and ctb |  is a reduction 

factor. The physical justification for using such a factor is the fact that fibers generally display 

reduced strengths in unidirectional composites as evidenced by the lower strength of the latter 

compared to the former in uni-axial longitudinal tension.  

In the transverse directions, the damage evolution functions (equations 16 and 17) are 

considered to independent of the strain-rate. The properties of the fibers in both transverse 

directions are the same, therefore the evolution functions as well as their parameters are the same 

and only the history of the loading is different.  
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The damages in transverse directions of the fibers are constrained to not exceed 0.10.  

Damages are imposed on the matrix material, but they affect only the shear stresses of the resin, 

which is considered to be the main contributor to the shear stresses of the RVC. A single Weibull 

distribution function is accepted again as an evolution function of the damages but it involves the 

ultimate strain for the damage development rather than the ultimate stress. The damage evolution 

function for in-plane shear is as follows: 
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Strain-rate dependency is considered only for the ultimate strain, 4m, and the strain-rate 

sensitivity factor is the same as for the shear effect on the fiber breakage: 

                                               mossm sa 444                                                      ….. (19) 

The other damage evolution functions for the matrix material are not strain-rate dependent. 

These damages for time step n + 1 are calculated as follows: 
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The damages of the matrix material are constrained to not exceed 0.20. These damages are 

applied on the matrix material shear stresses when the stress response of the sub-cells is 

calculated. The concept of the effective stress is accepted here for the matrix material, rather than 

the concept of the effective elastic moduli, because the matrix material model is isotropic while 

the damages in the material are not.  

 

2.4. Delamination 
 

Delamination is a failure mode which is due to the quadratic interaction between the through-

the-thickness stresses of a lamina and is assumed to be mainly a matrix failure. The loading 

criterion for this failure mode has the following form: 
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where  are Macaulay brackets, 3E  is the normal tensile modulus of the lamina, 23G  and 

31G  are the transverse shear moduli of the lamina, tS3  is the through-the-thickness tensile 

strength of the lamina, 230S and 
310S  are the transverse shear strengths of the lamina for tensile 

33 , r  is the damage threshold, and S  is a scale factor introduced to provide better correlation 

of delamination area with experiments which can be determined by fitting analytical prediction 

to experimental data for the delamination area. Under compressive through-the-thickness strain, 

033  , the damaged surface (delamination) is considered to be “closed”, and the damage 

strengths are assumed to depend on the compressive normal strain z  similar to Coulomb-Mohr 

theory, i.e.,  

                                                  zSR ES   tan3                                              ….. (23) 

where,   is the Coulomb’s friction angle. The normal tensile modulus of the lamina is 

computed at the first time step and stored as a material property. 
)1( n

lamd  is the damage variable associated with this failure mode and its evolution is given by the 

relation:  
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 where, r is the damage threshold as given in equation (22) and dm  is the damage 

exponent for delamination. Delamination damage is constrained at 0.10 to avoid numerical 

difficulties and when this maximum value is reached in an element, it is considered to be fully 

delaminated.  
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When delamination failure given by equation (22) occurs in an element, depending on the 

opening or closing of the damage surface, the damages variables ( )1( n

zd , 
)1( n

yzd and
)1( n

zxd ) 

specified in equations (25) and (26) are applied on the effective RVC stresses. 
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 For compressive mode, 033  : 
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For tensile mode, all the through-the-thickness stress components
33 , 

23  and 
31  of 

RVC are reduced while for compressive mode, the damage surface is considered to be closed, 

and thus, 
33  is assumed to be elastic and only 

23  and 
31  are reduced.  

 

2.5. RVC Stress Calculations 
 

The effective stresses in the RVC are determined from the sub-cell values in two phases: 

first, stresses in the fiber f and matrix MA are used to determine the effective stresses of part A; 

then these stresses and the stresses in matrix MB are used to determine the effective stresses in 

the RVC.  

As stated earlier, iso-strain boundary conditions are assumed for all the three sub-cells of the 

RVC. This implies the rule of mixture for the stress calculations. The simple rule of mixture 

applied on all components of the fiber and the matrix material stresses means physically that the 

fiber and matrix materials act in parallel in all directions under loading, which is definitely not 

realistic. However, this assumption is made in order to simplify the micro-mechanical relations. 

The direct stresses of part A are calculated from the direct stresses of the fiber sub-cell f and the 

matrix sub-cell MA using the following relations:  
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The behavior of unidirectional composites under shear is dominated by the behavior of the 

matrix material. The contribution of the fibers to the shear stress is very low compared to the 

contribution of the matrix material. Hence, ad hoc volume fraction coefficients are implemented 

for shear and a rule of mixture involving them is applied. Then, the shear stress of part A is 

determined, applying the damages of the matrix material introduced in the previous section, as 

follows: 
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The shear volume fraction coefficients, Vs4 and Vs5, are different for the in-plane and 

transverse shear. They have values quite lower than the volume fraction of the fibers. Since the 

matrix material is modeled as viscoplastic and the fibers are modeled as elastic, after the 

saturation of the plasticity in the matrix material, the contribution of the fibers to the shear stress 

of the sub-cells plays a role of strain hardening. 

Finally, the effective stresses in the RVC are obtained by applying the rule of mixtures again 

which yields the following relations including the softening of through-the-thickness components 

due to delamination failure as follows: 
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The total strains of the RVC, the total stresses in the matrix material, the internal state 

variables of the matrix material, the damage variables, and the time average strain-rate 

logarithms, 
dS  and 

sS , are kept as history variables at each time step of the explicit time 

integration process for the next time step calculations. 

 

3. Damage Parameter Estimation 
 

The damage parameter that has been used in the Weibull functions above (equations 14, 16, 

17 etc.) has been observed to be very problem dependent and difficult to characterize. A small 

value of the damage exponent (for ex. 1m in equation 14) makes the material behave in a very 

ductile manner and the behavior becomes increasingly brittle as this value increases. Hence, it is 

difficult to obtain the softening response of most quasi-brittle materials. The softening response 

heavily depends on the set-up and test machines, which can lead to very different results. The 

choice of damage parameters for each mode has been debated by Vaziri et al. [5] and Tabiei et 

al. [3]. A procedure for the calculation of softening parameter used in the damage evolution 

function has been discussed below. 

In their work, Pinho et al. [6] have calculated the maximum strain
f , as a function of the 

energy per unit area of the surface created  , the material strength 
0  and a one element 

dimension, L. 

                                          
L

f

*

*2
0




                                  ….. (34)                              

This maximum strain 
f calculated above has been in turn used in the calculation of the 

damage variable.  

                                     



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
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 n

f

fn dd ,
)(

)(
*1min

0

0
)1(




                                  ….. (35)                              

 

Now, apart from the function itself this formulation of damage is similar to what we have 

used above in section (2.3). Hence, the area under the damage functions can be been equated 

(equations (35) and (20)) and we can iteratively solve for the damage parameter by minimizing 

the error. As a preliminary test, this concept has been implemented in MATLAB
®
 for both the 

damage functions mentioned above for a wide range of element lengths and the results can be 

observed in figure 2 below. Each curve on the right in figure 2 represents the damage parameter 

calculated for a specified element length and it can be clearly seen that the damage curves look 

identical in both the figures. 
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4. Numerical Result and Discussion of Inter-laminar delamination 
 

As a verification example, an impact event on CFRP plates made of T800H/3900-2 

fiber/resin system with a laminate stacking sequence of    S30/45/90/45   and total thickness of 

4.65 mm is simulated using the current material model in LS-DYNA. These experimental results 

were originally obtained by an extensive investigation of out-of-plane impact loading of 

composite test coupons by Delfosse (8) and were used by Williams and Vaziri et al. [2] to 

evaluate the predictive capability of a plane-stress CDM based model for composite materials 

that they implemented in LS-DYNA.  

The goal of this study is to predict the delamination measurement made by the experiments 

and reported in Williams et al [2]. The test coupon consists of a simply supported 76.2 mm by 

127 mm plate impacted by a hemispherical steel impactor ( mm 4.25  in diameter), which in the 

numerical computation is treated as rigid body. The FE model is shown in figure 3. 

 
Figure (3): A full model view of the T800H/3900-2 CFRP laminate 

 

The CFRP plate in itself consists of 24-thru thickness integration points with each integration 

point representing a layer of the laminate stacking sequence   S30/45/90/45  .  

Figure (2): Damage function comparision after iteratively solving for the damage parameter. 
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Figure (4): Comparison of the delamination damage and experimental C-scan images on a T800H/3900-2 

CFRP plate. Numerical results obtained using Shell-25 element formulation in LS-DYNA. 
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Figure 4 qualitatively compares the predictions of projected inter-laminar delamination to 

the C-scan images of delamination growth for the low mass impact events provided in [2].  It is 

to be noted that the numerical results predicted in Figure 4 use the thickness-stretch shell element 

formulation .i.e., ELFORM=25. The box drawn around the numerical results highlights the 

location of the plate boundaries relative to the part of the plate modelled. 

 The same set of tests have been carried out with the standard shell elements i.e., ELFORM=2 

in LSDYNA and the results can be observed in Figure 5.  
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Figure (5): Comparison of the delamination damage and experimental C-scan images on a T800H/3900-2 

CFRP plate. Numerical results obtained using Shell-2 element formulation in LS-DYNA. 

 

Observing the results presented in Figures 4 and 5, the following comments can be made: 



14
th

 International LS-DYNA Users Conference Session: Composites 

June 12-14, 2016  1-13 

a) The total delamination area looks smaller as compared to the experiments when both sets 

of images in each figure (numerical and C-scan) are set to the same scale. 

b) The shape of the delamination however looks quite identical in both the cases as 

compared to the experiments. 

c) It can be said that the delamination behavior’s when using ELFORM=2 or 25 is identical.  

 However, in order to understand the effect of Z-Stress on delamination behavior it is 

important to consider the effect of each term on the left hand side of equation (22). In this 

equation, the first term accounts for the contributions from Z-Stresses, the second term for the 

YZ-Stresses and the last term for the ZX-Stresses of the lamina. Further, a single element inside 

the delamination zone has been selected for the models run with different element types 

(ELFORM=2 and ELFORM=25) and the contribution of each individual term in equation (22) 

has been analyzed. The results of which are shown in Figures 6 and 7. 

The following comments can be made on the results presented in Figures 6 and 7. 

a) A contribution of the Z-Stresses is seen in the model run using Shell ELFORM=25, 

however this is significantly small compared to the contribution from the YZ-Stresses. It 

is to be noted that as the total value of these terms goes beyond a value of 1, damage is 

introduced into the model and the load bearing capacity of the lamina in Z, YZ and ZX 

direction is reduced. 

b) As expected for the model run with Shell ELFORM=2, the Z-Stress contribution is zero 

and the total damage is dominated by the YZ-Stress contributions in the delamination 

criteria. 

c) The smaller contribution of the Z-Stresses in predicting delamination explains why we 

observe near identical results for the results presented in figures 4 and 5. 

 

 
Figure (6): Effect of each term in the calculation of delamination, Model run with Shell 

ELFORM = 25 
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Figure (7): Effect of each term in the calculation of delamination, Model run with Shell 

ELFORM = 2 

 

5. Conclusions 
 

In the current work, using LS-DYNA and a micro-mechanical material model [3] a 

qualitative delamination study has been performed for impact events with various normal 

incident energy levels (9.4J, 22J, 33.4J and 56.4J) on CFRP plates made of T800H/3900-2 

fiber/resin system. These analyses have been carried out using shell element formulations 2 

(which uses a plane-stress formulation) and 25 (which requires a full 3D constitutive model), 

primarily to study the effect of Z-Stresses in the delamination prediction. The results indicate 

that despite a smaller effect of Z-Stresses in the overall delamination prediction, the contribution 

resulting from this term cannot be ignored and hence it can be said that the thickness-stretch 

formulations (Shell ELFORM=25) can be considered more reliable in predicting delamination in 

composites. Though not completely accurate, both the element formulations have been able to 

predict quite realistic delamination results for impact simulations considered. 

 

In addition, a physically quantifiable method of determining the damage parameters based on 

the energy per unit area of the surface created has been presented. A 1-D case demonstrating the 

procedure has been implemented in MATLAB and has been found to be viable. As a future 

aspect of this work it is intended to implement this procedure into the micro-mechanical material 

model and enhance its capability. 
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