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Abstract 
 

A material model which incorporates several key capabilities which have been identified by 

the aerospace community as lacking in the composite impact models currently available in 

LS-DYNA
®

 is under development.  In particular, the material model, which is being 

implemented as MAT 213 into a tailored version of LS-DYNA being jointly developed by the FAA 

and NASA, incorporates both plasticity and damage within the material model, utilizes 

experimentally based tabulated input to define the evolution of plasticity and damage as opposed 

to specifying discrete input parameters (such as modulus and strength), and is able to analyze 

the response of composites composed with a variety of fiber architectures.  The plasticity portion 

of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an 

extension of the Tsai-Wu composite failure model into a generalized yield function with a non-

associative flow rule.  The capability to account for the rate and temperature dependent 

deformation response of composites has also been incorporated into the material model.  For the 

damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the 

deformation and damage analyses.  In the damage model, a diagonal damage tensor is defined 

to account for the directionally dependent variation of damage.  However, in composites it has 

been found that loading in one direction can lead to damage in multiple coordinate directions.  

To account for this phenomena, the terms in the damage matrix are semi-coupled such that the 

damage in a particular coordinate direction is a function of the stresses and plastic strains in all 

of the coordinate directions.  The onset of material failure, and thus element deletion, is being 

developed to be a function of the stresses and plastic strains in the various coordinate directions.  

Systematic procedures are being developed to generate the required input parameters based on 

the results of experimental tests. 

 

 

Introduction 

 
As composite materials are gaining increased use in aircraft components where impact resistance 

under high energy impact conditions is important (such as the turbine engine fan case), the need 

for accurate material models to simulate the deformation, damage and failure response of 



Session: Aerospace 14
th

 International LS-DYNA Users Conference  

1-2  June 12-14, 2016 

polymer matrix composites under impact conditions is becoming more critical.  Within 

commercially available transient dynamic finite element codes such as LS-DYNA [1], there are 

several material models currently available for application to the analysis of composites.  The 

available models include relatively simple equations where criteria related to ratios of stresses to 

failure strengths are used to signify failure. More sophisticated sets of material models, based on 

continuum damage mechanics approaches (such as Matzenmiller et al [2]), are also available 

where the initiation and accumulation of damage is assumed to be the primary driver of any 

nonlinearity in the composite response.  While these material models have been utilized with 

some level of success in modeling the nonlinear and impact response of polymer composites, 

there are some areas where the predictive capability can be improved.  Most importantly, the 

existing models often require correlation based on structural level impact tests, which 

significantly limits the use of these methods as predictive tools.  Furthermore, the current models 

generally assume that the nonlinear response of the composite can be modeled either by using a 

deformation based plasticity approach (such as in Sun and Chen [3]) or by a continuum damage 

mechanics approach (such as in Matzenmiller et al [2]). By using a plasticity based model, the 

nonlinear unloading and strain softening observed in actual composites [4] cannot be simulated.  

However, by using a continuum damage mechanics based model, the rate dependence in the 

material response, which is often observed in composites under high strain rate conditions [5], is 

difficult to incorporate in a theoretically consistent manner.  Furthermore, a continuum damage 

mechanics approach cannot fully account for the significant nonlinearity that is observed in the 

shear stress-strain response [6].  Therefore, a modeling approach in which a plasticity based 

deformation model is combined with a damage model (specifically designed to account for the 

nonlinear unloading and strain softening observed after the peak stress) can provide some 

advantages.  The input to current material models currently generally consists of point-wise 

properties (such as a specified failure stress or failure strain) that lead to curve fit approximations 

to the material stress-strain curves.  This type of approach leads either to models with only a few 

parameters, which provide a crude approximation at best to the actual stress-strain curve, or to 

models with many parameters which require a large number of complex tests to characterize.  An 

improved approach would be to use tabulated data, in which the material stress-strain curves are 

explicitly entered into the model in a discretized form.  The discretized data, obtained from a 

well-defined straightforward set of experiments, would allow the complete stress-strain response 

of the material to be accurately defined.  In addition, while many of the existing models are 

designed to be used with two-dimensional shell elements, to properly capture the through-

thickness response of the material, which may be significant in impact applications, a fully three-

dimensional formulation suitable for use with solid elements would be desirable. 

 

To begin to address these needs, a new composite material model, designated as MAT 213, is 

being developed and implemented for use within LS-DYNA.  The material model is meant to be 

a fully generalized model suitable for use with any composite architecture (unidirectional, 

laminated or textile).  For the deformation model, the commonly used Tsai-Wu composite failure 

criteria [6] has been generalized and extended to a strain-hardening plasticity model with a 

quadratic yield function and a non-associative flow rule.  For the damage model, a strain 

equivalent formulation has been developed, which allows the plasticity and damage calculations 

to be uncoupled, and thus allows the plasticity calculations to take place in the effective 

(undamaged) stress space. In traditional damage mechanics models such as the one developed by 

Matzenmiller et al [2], a load in a particular coordinate direction is assumed to result in a 

stiffness reduction only in the direction of the applied load.  However, as will be described in 
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more detail later in this paper, in the current model a semi-coupled formulation is developed in 

which a load in one direction results in a stiffness reduction in all of the coordinate directions. 

 

In the following sections of this paper, a summary of the rate-independent deformation model is 

presented.  Next, the strain equivalent semi-coupled damage model is discussed, along with the 

procedures that need to be used to properly characterize the damage model.  A discussion of the 

approaches that are being considered to account for material failure will be discussed. 

 

Deformation Model 

 
A general quadratic three-dimensional orthotropic yield function based on the Tsai-Wu failure 

model is specified as follows, where 1, 2, and 3 refer to the principal material directions. 

 

   

 



















































































31

23

12

33

22

11

66

55

44

332313

232212

131211

312312332211

31

23

12

33

22

11

321

00000

00000

00000

000

000

000

000





























F

F

F

FFF

FFF

FFF

FFFaf

    (1) 

 

In the yield function, σij represents the stresses and Fij and Fk are coefficients that vary based on 

the current values of the yield stresses in the various coordinate directions.  By allowing the 

coefficients to vary, the yield surface evolution and hardening in each of the material directions 

can be precisely defined.  The values of the normal and shear coefficients can be determined by 

simplifying the yield function for the case of unidirectional tensile and compressive loading in 

each of the coordinate directions along with shear tests in each of the shear directions.  In the 

above equation, the stresses are the current value of the yield stresses in the normal and shear 

directions.  To determine the values of the off-axis coefficients (which are required to capture the 

stress interaction effects), the results from 45° off-axis tests in the various coordinate directions 

can be used. 

 

A non-associative flow rule is used to compute the evolution of the components of plastic strain.  

The plastic potential for the flow rule is shown below 
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where σij are the current values of the stresses and Hij are independent coefficients, which are 

assumed to remain constant.  The values of the coefficients are computed based on average 

plastic Poisson’s ratios [7]. The plastic potential function in Equation (2) is used in a flow law to 
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compute the components of the plastic strain rate, where the usual normality hypothesis from 

classical plasticity [8] is assumed to apply and the variable     is a scalar plastic multiplier. 

 

σ
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


hp            (3) 

 

By utilizing the principal of the equivalence of plastic work [8], the plastic potential function can 

be found to be equal to the equivalent stress and the scalar plastic multiplier can be found to be 

equal to the effective plastic strain [7].   

 

To compute the current value of the yield stresses needed for the yield function, the common 

practice in plasticity constitutive equations is to use analytical functions to define the evolution 

of the stresses as a function of the components of plastic strain (or the effective plastic strain).  

Alternatively, in the developed model tabulated stress-strain curves are used to track the yield 

stress evolution.  The user is required to input twelve experimentally obtained stress versus 

plastic strain curves in a tabulated, discretized form.  Specifically, the required curves include 

uniaxial tension and compression curves in each of the normal directions (1,2,3), shear stress-

strain curves in each of the shear directions (1-2, 2-3 and 3-1), and 45 degree off-axis tension 

curves in each of the 1-2, 2-3 and 3-1 planes.  The 45 degree curves are required in order to 

properly capture the stress interaction effects.  By utilizing tabulated stress-strain curves to track 

the evolution of the deformation response, the experimental stress-strain response of the material 

can be captured to a much higher degree of accuracy.  Currently, only static test data is 

considered.  The methodology is being adjusted to account for rate and temperature effects.  To 

account for rate and temperature effects, a series of curves are generated for a variety of strain 

rates and temperatures.  The table look up feature in LS-DYNA is then used to track the 

evolution of the yield stresses for varying temperatures and rates.  To track the evolution of the 

deformation response along each of the stress-strain curves, the effective plastic strain is chosen 

to be the tracking parameter.  Using a numerical procedure based on the radial return method [8] 

in combination with an iterative approach, the effective plastic strain is computed for each 

time/load step and the modified yield stresses are computed based on the effective plastic strain. 

 

Several important issues have been identified which needed to be accounted for in the numerical 

implementation.  One potential difficulty in computing the yield function coefficients based on 

the various input stress-strain curves is that due to numerical approximation or experimental 

variability, or just the nature of the actual composite response, the set of coefficients computed 

for the yield function shown in Equation (1) may result in a non-convex yield surface.  For a 

valid plasticity based analysis, a convex yield surface is required [8].  In order to ensure a convex 

yield surface, the baseline stress-strain curves may need to be modified in order to yield 

appropriate coefficients of the yield function.  In line with the approximation commonly used 

with the Tsai-Wu failure criteria upon which the yield function is based, the F12 coefficient of the 

yield function can be modified based on the following expression, which is compatible with a 

von Mises type of yield function [6] 
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In this expression, for each value of the effective plastic strain in the generated stress versus 

effective plastic strain curves the F11 and F22 coefficients are computed based on the appropriate 

input curves, and a modified value of the F12 coefficient is computed for the selected value of the 

effective plastic strain.  Similar modifications can be applied to the F13 and F23 coefficients in 

order to ensure a convex yield surface. 

 

In the numerical algorithm, the standard elastic constitutive equation is used to compute the new 

stresses for a particular iteration (i+1) within a particular time step (n+1), where the flow law 

(Equation (3)) is applied to compute the components of the increments of plastic strain as shown 

below. 
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where C is the standard elastic stiffness matrix, Δε is the increment in total strains, and the 

remaining terms are as defined previously. In Equation (5), the direction of the plastic correction 

vector (the derivative of the plastic potential function with respect to stress) has been selected to 

be a dynamic value based on the stresses and the plastic potential function computed in the 

previous iteration.  The common practice in the radial return algorithm is to use a constant vector 

based on the derivative of the plastic potential function based on the trial elastic stresses [8].  

However, it has been found that the yield surface can rotate as the plastic strain evolves based on 

the anisotropic nature of the yield function.  One example of where the yield surface can rotate 

occurs when a unidirectional carbon fiber composite is analyzed.  In this case, the yield stress in 

the longitudinal (fiber) direction effectively remains constant (due to the relatively rigid behavior 

of the carbon fibers) and the yield stresses in the transverse directions can vary significantly (due 

to the more ductile response of the polymer matrix).  As the transverse yield stress changes while 

the longitudinal yield stress remains constant, the yield surface will rotate.  This rotation of the 

yield surface will result in the vector that the stresses need to take to “return” to the yield surface 

changing direction as the plastic strain evolves. 

 

Damage Model 

 
The deformation portion of the material model provides the majority of the capability of the 

model to simulate the nonlinear stress-strain response of the composite.  However, in order to 

capture the nonlinear unloading and local softening of the stress-strain response often observed 

in composites [4], a complementary damage law is required.  In the damage law formulation, 

strain equivalence is assumed, in which for every time step the total, elastic and plastic strains in 

the actual and effective stress spaces are the same [4].   The utilization of strain equivalence 

permits the plasticity and damage calculations to be uncoupled, as all of the plasticity 

computations can take place in the effective stress space. 

   

The first step in the development of the damage model is to relate the actual stresses to a set of 

effective stresses by use of a damage tensor M 

 

effMσσ 
                            (6) 
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The effective stress rate tensor can be related to the total and plastic strain rate tensors by use of 

the standard elasto-plastic constitutive equation 

 

 peff εεCσ  
                                                                                   (7) 

 

where C is the standard elastic stiffness matrix and the actual total and plastic strain rate tensors 

are used due to the strain equivalence assumption. 

 

An algorithm to carry out the uncoupled plasticity/damage analysis is summarized below.  In the 

algorithm, the superscript “n” represents values computed in the previous time step, and the 

superscript “n+1” indicates values to be computed in the current time step.  In the first step of the 

algorithm, the actual stresses are converted into effective stresses using the damage tensor M.  In 

the second step, the plasticity calculations are carried out in the effective stress space to compute 

the current value of the plastic strain rate, and the effective stress values are updated.  Next, in 

step 3 the damage tensor is modified based on the computed plastic strain rate.  Finally, in step 4 

the modified damage tensor is used to compute the updated values of the actual stresses based on 

the updated effective stresses.  The algorithm is summarized symbolically below, where Δt is the 

time step. 
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As specified in Equation (6), the effective and actual stresses are related through a damage 

tensor.  Given the usual assumption that the actual stress tensor and the effective stress tensor are 

symmetric, Equation (6) can be rewritten in the following form, where the damage tensor M is 

assumed to have a maximum of 36 independent components: 
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In many damage mechanics models for composites, for example the models discussed in [2] and 

[4], the damage tensor is assumed to be diagonal or manipulated to be a diagonal tensor.  The 

implication of a diagonal damage tensor is that loading the composite in a particular coordinate 

direction only leads to a stiffness reduction in the direction of the load due to the formation of 

matrix cracks perpendicular to the direction of the load.  However, several recent unpublished 

experimental studies conducted at NASA Glenn Research Center have shown that in actual 
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composites, particularly those with complex fiber architectures, a load in one coordinate 

direction can lead to stiffness reductions in multiple coordinate directions. 

 

One approach to incorporating the coupling of damage modes would be to use a non-diagonal 

damage tensor.  However, while this formulation would allow for directional coupling, it would 

have the side effect of a unidirectional load in the actual stress space resulting in a multiaxial 

load in the effective undamaged space.  For the strain equivalent combined plasticity damage 

formulation envisioned for this model, this would be an undesirable side effect as the plasticity 

calculations could be adversely affected due to the introduction of nonphysical stresses. 

 

To avoid the undesired stress coupling, a diagonal damage tensor is required.  However, to 

account for the damage interaction in at least a semi-coupled sense, each term in the diagonal 

damage matrix should be a function of the plastic strains in each of the normal and shear 

coordinate directions.  The plastic strains are used since in the current model they track the 

current state of load and deformation in the material. 

 

These results suggest that the relation between the actual stress and the effective stress should be 

based on a multiplicative combination of the damage terms as opposed to an additive 

combination of the damage terms.  For example, for the case of plane stress, the relation between 

the actual and effective stresses could be expressed as follows: 
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where for each of the damage terms 
kl

ijd the subscript indicates the direction of the load which 

initiates the particular increment of damage and the superscript indicates the direction in which 

the damage takes place.  Note that for the full three-dimensional case the stress in a particular 

coordinate direction is a function of the damage due to loading in all of the coordinate directions 

(1, 2, 3, 12, 31 and 23).  By using a polynomial to describe the damage, the coupled terms 

represent the reduction to the degree of damage resulting from the fact that in a multiaxial 

loading case the area reductions are combined. 

 

There are two primary items needed for model characterization and input for the damage portion 

of the material model.  First, the values of the various damage parameter terms 
kl

ijd need to be 

defined in a tabulated manner as a function of the effective plastic strain.  Similar to the 

deformation model, the values of the damage parameters are defined in a tabulated, discretized 

form in order to reflect the actual material behavior in the most accurate manner possible.  The 

values are tabulated as a function of the effective plastic strain in order to provide a unified 

framework to simultaneously track the evolution of multiple damage parameters under multiaxial 

loading conditions.  As mentioned above, since in the context of the current model the plastic 

strains are used to represent the nonlinear deformation of the material, using the effective plastic 

strain as an equivalent parameter to track the damage parameter evolution should be reasonable.  

Note that for the case of uniaxial loading the effective plastic strain equals the uniaxial plastic 

strain, which maintains consistency with the formulation described above.  In addition to 

characterizing the damage parameters, the various input stress-strain curves need to be converted 
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into plots of effective (undamaged) stress versus effective plastic strain in order to carry out the 

calculations required by the deformation (plasticity) model.  As an example of how this process 

could be carried out, assume that a material is loaded unidirectionally in the 1 direction.  At 

multiple points, once the actual stress-strain curve has become nonlinear, the total strain ( 11 ), 

actual stress (σ11), and average local, damaged (reduced) modulus 11

11

dE  in the 1 direction can be 

measured.  Assuming that the original, undamaged modulus 11E  is known, since the damage in 

the 1 direction is assumed to be only due to the load in the 1 direction (due to the uniaxial load), 

the damage parameters and effective stress in the 1 direction can be computed at a particular 

point along the stress-strain curve as follows: 
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These values need to be determined at multiple points, representing different values of plastic 

strain, in order to fully characterize the evolution of damage as the plastic strain increases. 

 

With this information, an effective stress versus plastic strain  p

11  plot can be generated.  From 

this plot, the effective plastic strain corresponding to the plastic strain in the 1 direction at any 

particular point can be determined by using the equations shown below, which are based on 

applying the principal of the equivalence of plastic work [8] in combination with Equation (2), 

simplifying the expressions for the case of unidirectional loading in the 1 direction [7]: 
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where p

e  is the effective plastic strain and pd 11  is the increment of plastic strain in the 1 

direction.  From this data, plots of the effective stress in the 1 direction versus the effective 

plastic strain as well as plots of the damage parameter 11

11d  as a function of the effective plastic 

strain can be generated.  By measuring the damaged modulus in the other coordinate directions at 

each of the measured values of plastic strain in the 1 direction, the value of the damage 

parameters 33

11

12

11

22

11 ,, ddd , etc. can be determined as a function of the plastic strain in the 1 

direction, and thus as a function of the effective plastic strain.   To determine the remaining 

required damage terms, this process would need to be repeated by the loading the material in the 

other coordinate directions. 
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To convert the 45º off-axis stress-strain curves into plots of the effective (undamaged) stress 

versus effective plastic strain, the total and plastic strain (permanent strain after unload) in the 

structural axis x direction needs to be measured at multiple points along the stress-strain curve.  

Given the undamaged modulus Exx, and utilizing the strain equivalence hypothesis, the effective 

stress in the structural axis system x direction can be computed as follows: 
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Given the effective stress in the structural axis system, the effective stresses in the material axis 

system can be generated by use of stress transformation equations. Using the material axis 

system stresses, the plastic potential function and effective plastic strain corresponding to each 

value of plastic strain can be determined using the standard stress transformation equations for 

the case of 45º off-axis loading and the principal of the equivalence of plastic work in 

combination with Equation (2) as shown below [7]: 
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The methods to predict element failure are still under development.  The failure model will be 

based on values of the effective plastic strain, the computed damage parameters and stress 

invariants such as those defined in the yield function. 

 

Failure Model 

 
In a failure model based on tabulated input that has been developed for metals, MAT 224, the 

effective failure strain of the material is defined to be a function of the triaxiality, which is the 

ratio of the hydrostatic stress to the von Mises stress, and for the case of solid elements, the Lode 

parameter, which is a ratio of the J3 deviatoric stress invariant and the cube of the von Mises 

stress [1].  An advantage of this approach is that the variation in the material failure response due 

to varying load conditions and directions is accounted for while still being based on stress and 

strain invariants, which maintains a level of consistency.  However, this model was primarily 

developed for the case of isotropic materials.  Developing a similar tabulated based model for 

composites adds a significant level of complexity due to the significant anisotropy in the material 

response and failure behavior.  Classic composite failure criteria such as the Tsai-Wu criteria [6] 

account for the variation in the material failure response due to the material anisotropy and load 

direction with the various anisotropic constants in the failure model.  Hashin [9] and Mayes and 

Hansen [10] argue that failure criteria can be expressed in terms of stress invariants.  Similarly, 

Feng [11] derived a failure model in terms of strain invariants.  The above listed authors also 

described how the Tsai-Wu failure criteria [6] can be rewritten in terms of the various stress and 

strain invariants that were established.  The stress invariants described in the above studies were 

developed assuming the condition of transverse isotropy, appropriate for a unidirectional 
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composite.  The above models also developed separate criteria based on fiber driven failure and 

matrix driven failure.  The failure model for MAT 213 will involve the determination of stress 

invariants appropriate for the case of general orthotropic materials, not just transversely isotropic 

materials.  The model will permit the use of previously established failure models as special 

cases.  The model will also allow for a general, macroscopic failure criteria, as well as 

specialized failure criteria based on constituent (fiber and matrix) based failure modes.  

  

Conclusions 

 
A generalized composite model suitable for use in polymer composite impact simulations has 

been developed.  The model utilizes a plasticity based deformation model based on generalizing 

the Tsai-Wu failure criteria.  A strain equivalent damage model has also been developed in 

which loading the material in a particular coordinate direction can lead to damage in multiple 

coordinate directions.  Procedures have also been developed to appropriately characterize the 

damage model.  Ongoing efforts will include refining the methods to model failure and element 

removal.  An extensive set of verification and validation studies will be undertaken in order to 

fully exercise the developed model. 
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