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1 Introduction 
Traditionally in LS-DYNA (almost) all contact definitions use a penalty formulation. This means that 
penetration in the contact is required to obtain a contact force between interacting entities. It is then up 
to the user to verify that the penetrations are small enough not to influence the results. The Mortar 
contacts [1], which have become the preferred choice for implicit analyses, is of penalty type. 
Also, the rigid walls (*RIGIDWALL) use a penalty method in implicit analyses. To find a good penalty 
stiffness setting may be problematic if solid elements (especially tetrahedra), or soft materials, such as 
rubber or plastic, are involved. It can be hard to find a good trade-off between reasonably small 
penetrations and implicit convergence. 
In this paper, we present a new approach to rigid walls and rigid analytical shapes (*CONTACT_ENTITY, 
see Fig.1) using an augmented Lagrange formulation [4] that enforces zero penetrations. The 
implementation is intended for implicit analyses. The rigid wall implementation is a re-formulation of the 
existing functionality, while the implementation of *CONTACT_ENTITY for implicit analysis is new. 

 
Fig.1: Examples of pre-define analytical shapes that can be created by *CONTACT_ENTITY. 

We also present a new small-sliding contact algorithm dedicated to implicit analyses using the same 
approach. In many analysis applications where implicit is the dominating solution technique, for example 
static stress analyses and high cycle fatigue analyses, only small relative motions are expected between 
the parts in the model. For such analyses, small-sliding contact is sufficient, and the small-sliding 
assumption, meaning that the contact pairs need not to be updated after one initial contact search, 
simplifies the numerical implementation in many ways. This small-sliding, augmented Lagrange contact 
uses the keyword *CONTACT_CONSTRAINT_SURFACE_TO_SURFACE and is activated by the implicit 
accuracy IACC variable of *CONTROL_ACCURACY. 
The use of Lagrange multiplies will rearrange the structure of the stiffness matrix, generating a saddle 
point problem. For this type of problem, the traditional quasi-Newton approach of BFGS in LS-DYNA is 
inefficient. As an alternative, methods of Jacobian-Free Newton-Krylov (JFNK) type [3] can be used to 
improve the nonlinear convergence, and the implementation is also outlined.  



14th European LS-DYNA Conference 2023, Baden-Baden, Germany 
 
 

 
© 2023 Copyright by DYNAmore GmbH, an Ansys Company 

 

1.1 Acknowledgement 
In this Paper, public FE-models of a 2010 Toyota Yaris [5][6] is used as a basis for some examples, see 
Sections 3.3 and 3.5. The work of the CCSA at the George Mason University is gratefully acknowledged. 

2 Theoretical background 
2.1 Augmented Lagrangian Contact Formulation 
For ease of presentation let us consider the simplified situation of a rigid wall contacting a tracked 
surface. The rigid wall can be either a plane, a cylinder, a sphere, or a prism, while the tracked surface 
is a set of node points. Because of its simple shape it is easy to obtain geometric information such as 
normal, 𝑛𝑛,  and tangent plane, 𝑡𝑡, of the rigid wall at any point. The distance between a tracked node and 
its projection, along the rigid wall normal, onto the rigid wall is the gap, 𝑔𝑔𝑁𝑁. A positive gap implies that 
the node is outside the rigid wall, while a zero gap means that the node and wall are in contact. Negative 
gaps are not allowed.  
 
Let 𝜆𝜆𝑁𝑁 ⊂ ℝ be the normal pressure for maintaining a closed gap between rigid wall and a contacting 
node. The conditions for normal contact can be succinctly summarized in the complementarity 
 

𝑔𝑔𝑁𝑁 ≥ 0,  𝜆𝜆𝑁𝑁 ≥ 0, 𝑔𝑔𝑁𝑁𝜆𝜆𝑁𝑁 = 0 
 
This expresses impenetrability of the rigid wall, that is, the fact that either a gap or a normal pressure 
exists, but not both at the same time. Using the minimum map formula this is equivalent to the equation 
 

ℎ𝑁𝑁 = min(𝑔𝑔𝑁𝑁 , 𝜆𝜆𝑁𝑁) = 0 
 
Further, if a tracked node in contact with the rigid wall slips an amount 𝑔𝑔𝑇𝑇 along the wall there will be 
friction forces. Such forces oppose any relative movement between node and wall and act in the plane  
𝑡𝑡  tangential to the wall. For Coulomb friction the tangential reaction forces, 𝜆𝜆𝑇𝑇 ⊂ ℝ2, obey the equations   
 

ℎ𝑇𝑇 = 𝜆𝜆𝑇𝑇 − 𝛾𝛾(𝜆𝜆𝑇𝑇 − 𝑔𝑔𝑇𝑇) = 0 
𝛾𝛾 =

𝑠𝑠
max (𝑠𝑠, ‖𝜆𝜆𝑇𝑇 − 𝑔𝑔𝑇𝑇‖)

 

 
where 𝑠𝑠 = 𝜇𝜇𝜆𝜆𝑁𝑁 with 0 ≤ 𝜇𝜇 ≤ 1 the coefficient of friction. As long as the magnitude of the tangential forces 
is less than the threshold 𝑠𝑠 no slip can occur and the wall and node will stick together. However, if this 
is not the case then there will be a sliding movement between them.  
 
Collecting normal and tangential directions into the matrix 𝑃𝑃 = [𝑛𝑛 𝑡𝑡], and defining also the vectors  
 

𝜆𝜆 = �𝜆𝜆𝑁𝑁𝜆𝜆𝑇𝑇
� ,  ℎ = �ℎ𝑁𝑁ℎ𝑇𝑇

� 

 
the translational force that needs to be added to each node on the tracked surface is given by 
 

𝑓𝑓 = 𝜅𝜅𝑃𝑃(𝜆𝜆 − ℎ) 
 
with 𝜅𝜅 > 0 is a scaling parameter for unit consistency.  
 
We refer the reader to [4] and the references therein for a more thorough explanation of Augmented 
Lagrangian contacts and finite elements. 
 

2.2 Jacobian-Free Newton-Krylov Method 
The equations arising from finite element discretization are nonlinear and therefore solved using 
Newton’s method. Its classical form is to iterate on the linearized system. Indeed, given some initial 
guess for the solution 𝑥𝑥0, for 𝑘𝑘 = 0,1,2, … until convergence, do 
  

𝐾𝐾𝑘𝑘Δ𝑥𝑥𝑘𝑘 = 𝐹𝐹𝑘𝑘 
𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − Δ𝑥𝑥𝑘𝑘 
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Here, 𝐹𝐹𝑘𝑘 = 𝐹𝐹(𝑥𝑥𝑘𝑘) is the load vector, 𝐾𝐾𝑘𝑘 = 𝜕𝜕𝑥𝑥𝐹𝐹𝑘𝑘 the stiffness matrix, and Δ𝑥𝑥𝑘𝑘 a search direction to improve 
the current iterate 𝑥𝑥𝑘𝑘. Since the stiffness matrix is generally large, sparse, and indefinite for Augmented 
Lagrangian contacts, it is expensive to compute the search direction using direct methods such as LU-
factorization. It is therefore tempting to try to use a cheaper iterative method for this purpose. We have 
implemented a Jacobian-Free Newton-Krylov (JFNK) method, which is a special variant of the well-
known generalized minimal residual (GMRES) method.  
 
Consider a single iteration with fixed 𝑘𝑘. Assuming no prior knowledge of the search direction Δ𝑥𝑥𝑘𝑘, our 
GMRES method uses an 𝑚𝑚-dimensional so-called Krylov space, defined by  
 

𝒱𝒱𝑘𝑘𝑚𝑚 = {𝐹𝐹𝑘𝑘,𝐾𝐾𝑘𝑘𝐹𝐹𝑘𝑘,𝐾𝐾𝑘𝑘2𝐹𝐹𝑘𝑘, … ,𝐾𝐾𝑘𝑘𝑚𝑚−1𝐹𝐹𝑘𝑘} 
 
to construct a least squares approximation Δ𝑥𝑥�𝑘𝑘 ∈ 𝒱𝒱𝑘𝑘𝑚𝑚 to Δ𝑥𝑥𝑘𝑘. To this end, the residual is required to be 
orthogonal to the next Krylov space 𝒱𝒱𝑘𝑘𝑚𝑚+1 = 𝐾𝐾𝑘𝑘𝒱𝒱𝑘𝑘𝑚𝑚, that is, 
  

𝐹𝐹𝑘𝑘 − 𝐾𝐾𝑘𝑘Δ𝑥𝑥�𝑘𝑘  ⊥ 𝒱𝒱𝑘𝑘𝑚𝑚+1  
 
In practice this amounts to solving an 𝑚𝑚 + 1 by 𝑚𝑚 least squares problem for 𝑚𝑚 unknowns. The unspoken 
hope is, of course, that a good approximation can be obtained for a moderate value of 𝑚𝑚.  
 
The unique feature with the JFNK method is that the involved Krylov spaces can be constructed without 
ever forming the stiffness matrix. Thus, allowing a very memory conserving method. The key observation 
is that matrix-vector multiplications of type 𝐾𝐾𝐾𝐾 (with 𝐾𝐾 denoting a generic vector), which are necessary 
for forming the Krylov vectors {𝐾𝐾𝑗𝑗𝐾𝐾}𝑗𝑗=0𝑚𝑚−1 , can be interpreted as a directional derivative and computed as 
any finite difference, e.g.,  
 

𝐾𝐾𝐾𝐾 =
𝐹𝐹(𝑥𝑥 + 𝜖𝜖𝐾𝐾 ) − 𝐹𝐹(𝑥𝑥)

𝜖𝜖
 

 
where, typically, we use 𝜖𝜖 =  10−4ℎ, with ℎ a characteristic length. This formula can be iterated to 
compute all Krylov vectors in the Krylov spaces. 
  
To accelerate convergence we (right) precondition the GMRES method using a stiffness matrix from the 
previous time step. This lagging avoids forming and LU factoring the matrix during every iteration.   
 

3 Results 
In this section, some examples of the Augmented Lagrange Method approach for Rigid Walls, Contact 
Entity and small-sliding contact are presented. The traditional application of rigid walls and contact entity 
is to replace a testing environment (like parts of a test rig, or the road surface in a crash analysis) with 
rigid, parametrized entities. This can save modelling time and reduce element count in the model.  
All results in this section are obtained using the implicit solver of LS-DYNA. 
 

3.1 Taylor bar impact 
One of the most classical applications of *RIGIDWALL is perhaps for replacing a rigid crash barrier, see 
for example Ref. [5]. As an example of this, the Taylor bar impact analysis [2], is presented, see Fig. 2 
for a comparison of the rigid wall reaction forces to previous implicit implementation and explicit (which 
should be seen as the reference solution in this case). It can be noted that the previous penalty method 
(blue curve in Fig. 2) misses the initial force peak, while the augmented Lagrange method follows the 
trend from the explicit (reference) solution. 
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Fig.2: The left image shows a cylinder impacting a rigid wall. The right image shows a comparison of 

the reaction forces for the explicit solution (red) and the implicit solution using both the penalty 
method (blue) and the augmented Lagrange formulation (green). 

3.2 Tensile testing of a LEGO® element 
This example from LEGO® shows a tensile test of a LEGO® element. Two steel pins clamp the element, 
the lower is stationary and the upper is moved, while the reaction forces are measured. In this case, the 
steel pins are modelled as moving cylindrical rigid walls, with non-zero friction, shown as grey in Fig. 3, 
where the element is shown in orange. The simulation is performed using implicit dynamics. The final 
deformation is shown in the right image of Fig 3. The reaction forces are shown in Fig. 4. In this case, 
the ALM gives higher reaction forces, since the default settings of the penalty formulation results in quite 
large penetrations for this specific combination of mesh size and material properties. For this case, using 
the full-Newton solution method, 14338 iterations are required to complete the solution, while the JFNK 
method requires 3446 iterations. This is also reflected in the solution time, which is about 4 times faster 
for JFNK than BFGS. 

 
Fig.3: The left image shows the LEGO® element (orange) in the undeformed configuration, with the 

test rig as cylindrical rigid walls (grey). The right image shows the final configuration. 
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Fig.4: Reaction force in the moving cylinder (rigid wall) compared to section force and requirement of 

100 N, for the different implementations. The simulation using the penalty method was aborted 
due to the extremely long solution time. 

3.3 Prismatic indenter on a rubber block 
A prismatic indenter (20×20×120 mm) is pushed into a rubber cube (100×75×75 mm), see the left image 
of Fig. 5. The target motion is 50 mm. The material model *MAT_HYPERELASTIC_RUBBER is used for 
the rubber, with C10 = 0.5508, C01 = 0.1377 and ν = 0.4995, which roughly corresponds to hardness 
63 Shore-A. The indenter is modelled as moving prismatic rigid wall (keyword: 
*RIGIDWALL_GEOMETRIC_PRISM_MOTION_DISPLAY_ID). The coefficient of friction between the 
indenter and the rubber block was 0.1. The simulation is performed using implicit dynamics. The final 
configuration, using the ALM implementation, is shown in the right image of Fig. 5. The crossed edges 
that may be noted are since rigid walls use a one-way nodes-to-surface contact search, where only the 
tracked nodes are checked.  
 

 
Fig.5: The left image shows the initial configuration of the indentation test. The grey part is the rubber 

block, and the orange part is the geometric representation of the prismatic rigid wall, auto-
created by LS-DYNA. The right image shows the final configuration using the ALM 
implementation. 

The simulation results using the ALM implementation of the rigid wall was compared to the penalty 
implementation of mpp/LS-DYNA R12.2.1. Initially, the penalty implementation works quite well, but 
for the final phase of the large indentation (after 48.4 mm) the reaction force drops due to an unstable 
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deformation mode, see Fig. 6. In this case, using the ALM for the rigid wall, the JFNK solution scheme 
requires totally 439 iterations to complete the 50 mm loading, while the standard BFGS solution 
scheme requires 6 times more (or 2677) iterations.  

 
Fig.6: Comparison of rigid wall reaction force vs. displacement for the ALM and the penalty method. 

Quite good agreement is obtained, but for the last phase of compression, the penalty method 
loses contact force. 

3.4 Three-point bending of a B-pillar 
In this example, rigid walls are used for quickly and conveniently creating a simplified representation of 
a three-point bending rig. The B-pillar, taken from Ref. [5], is placed on prismatic supports, and the 
impactor is modelled as a cylindric moving rigid wall, see the top image of Fig. 7. The distance between 
the supports is approximately 805 mm. To determine the ultimate strength of the B-pillar, a prescribed 
displacement of 100 mm is applied to the cylindrical rigid wall. A friction coefficient of 0.1 is used with 
all the rigid walls. The simulation is performed using implicit dynamics. For this example, the JFNK 
method requires 7398 iterations and 9 retries to complete the solution, while the BFGS method requires 
16849 iterations and 74 retries. Especially with regards to the significant reduction of retries, the JFNK 
method seems beneficial in this case. 
The force vs. displacement curve is shown in Fig. 8. Similar results are obtained for all studied 
implementations. 
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Fig.7: The top image shows the undeformed configuration. The blue prisms are fixed while the red 

cylindrical rigid wall is pushed 100 mm downwards, to obtain the final configuration, as shown 
in the bottom image. 

 
Fig.8: Force vs. displacement results for the different rigid wall implementations. Similar results for all 

rigid wall implementations and solution methods. 

3.5 Spherical indenter on a rubber block 
For the contact entity functionality (keyword: *CONTACT_ENTITY), this test demonstrates the capability 
to handle rolling contact with relatively high friction and large displacements. A spherical contact entity 
is first pressed 40 mm into a 100 mm high rubber block (using the same material model as in Section 
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3.2) and then translated in a spiral-like pattern by prescribed motions, while the rotational degrees-of-
freedom are free. The coefficient of friction between the sphere and the rubber block is 0.45. The initial 
geometry is shown in the left image of Fig. 9, while an intermediate deformed state is shown in the right 
image. The trace line shows the trajectory of the north pole of the sphere. 

 
Fig.9: The left image shows the geometry of the sphere (grey) and the rubber block (green). The right 

image shows an example of the deformed shape during the rolling phase, with the black line 
showing the trajectory of the north pole of the sphere. 

3.6 Oil-canning of a door panel 
In this example, a spherical contact entity is used to model the indenter in an oil-canning test of a door 
panel, see Fig. 10. The FE-model of the door is taken from Ref. [5]. The indenter (R=25 mm) is pushed 
50 mm into the door panel, in the transverse (Y) direction by a prescribed motion, and then translated 
back to the original position. The simulation is performed using implicit statics, and the standard BFGS 
solution method. The force vs. displacement results are compared to results using a meshed rigid 
sphere and Mortar contact in Fig.11. In this case, the solution time for the contact entity is even 15 % 
less than for the simulation using a meshed rigid part and Mortar contact (using the same hardware and 
other settings).  
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Fig.10: The left image shows the initial geometry of the door with the spherical indenter. The right image 

shows the deformed shape after 50 mm indentation and release. 

 
Fig.11: Force vs. displacement results for the contact entity compared to the meshed rigid part.  

3.7 Bolt pre-tension of an L-bracket assembly 
To demonstrate the small-sliding constraint contacts in an example, the assembly of an L-bracket to a 
base plate using four bolts is studied, see the left image of Fig. 12. The assembly is subjected to 1 kN 
loading/unloading first in the transverse (X) and then in the longitudinal (Y) direction, but first bolt pre-
tensioning is applied. The objective of the analysis is to determine the peak stress in the bracket. This 
is a simple but typical example of where small-sliding contacts may be well motivated. After bolt pre-
tension is applied, and at this loading (1 kN), no sliding is expected between the parts in the assembly. 
Using constraint contacts and the JFNK solution method, 177 iterations are required to complete the 
solution statistics, compared to 229 iterations using Mortar contact and the standard BFGS solution 
method. The peak stress in the L-bracket is computed as 297 MPa using the constrained contact, while 
the Mortar result is 321 MPa (8 % higher). Solution times are comparable. 
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Fig.12: The left image shows the geometry of the L-bracket assembly. The loading is applied to a 

distributing coupling (*CONSTRAINED_INTERPOLATION) at the top bolt hole. The right image 
shows the stress corresponding to the peak loading. 

4 Summary and outlook 
For implicit analyses, the Lagrange multiplier approach to rigid walls and analytical rigid shapes 
(*CONTACT_ENTITY) will replace the previous implementation of these features. The examples of 
Section 3 demonstrate that the present implementations are useful for different applications, like creating 
simplified representations of test rigs. Further developments will be driven by customer input and 
requests. The present implementation of the rigid walls is based on node-to-surface penetration check, 
which means that some contact situations may be missed, like edge-to-edge or edge-to-surface 
contacts. In future versions, an extension to (optionally) segment-based contact search for rigid walls 
and contact entities may be considered.  
The development of constraint-type contacts for implicit analyses, possibly extending the functionality 
to large sliding, will continue based on customer input. We believe that in for example process 
simulations, like extrusion of plastics or forming of carton packages, the use of augmented Lagrange 
contacts may deliver results even closer to reality, since the details of the tooling may be challenging to 
fully resolve using a penalty method. Some further developments will be required to make the contacts 
useful in, for example coupled thermomechanical simulations.   
Also, further research on the alternative JFNK methods to improve the nonlinear solver for handling the 
saddle-point type of problems associated with the Lagrange multiplier approach will be required. Results 
so far, for the rigid walls especially, seem promising, regarding rate of convergence and iteration count. 
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