Blast Mitigation Seat Simulations Using LS-DYNA®
Military vehicles are exposed to mine and explosive loads in operational conditions and the vehicle must have the appropriate protection level to prevent personnel injuries. Blast mitigation seats represent a critical component in ensuring personnel safety. In this study, we conducted mine blast simulations using the non-linear finite element code LS-DYNA® to examine the structural behavior of blast mitigation seats. The blast simulations were carried out in accordance with the requirements of NATO AEP-55 STANAG 4569 VOL-2. We employed the Structured Arbitrary Lagrangian-Eulerian (ALE) method for these simulations. The model encompassed an ALE domain, including soil, air, explosive definitions, and a Lagrange domain for the 4x4 military vehicle. To assess the impact of the explosive charge on the occupant, we utilized the LSTC Hybrid III 50th dummy. We measured force and acceleration outputs from the dummy and compared them with the allowable limits defined in NATO AEP-55 STANAG 4569 VOL-2.
https://www.dynalook.com/conferences/14th-european-ls-dyna-conference-2023/protective-structures/balaban_tempa_engineering_commerce.pdf/view
https://www.dynalook.com/@@site-logo/DYNAlook-Logo480x80.png
Blast Mitigation Seat Simulations Using LS-DYNA®
Military vehicles are exposed to mine and explosive loads in operational conditions and the vehicle must have the appropriate protection level to prevent personnel injuries. Blast mitigation seats represent a critical component in ensuring personnel safety. In this study, we conducted mine blast simulations using the non-linear finite element code LS-DYNA® to examine the structural behavior of blast mitigation seats. The blast simulations were carried out in accordance with the requirements of NATO AEP-55 STANAG 4569 VOL-2. We employed the Structured Arbitrary Lagrangian-Eulerian (ALE) method for these simulations. The model encompassed an ALE domain, including soil, air, explosive definitions, and a Lagrange domain for the 4x4 military vehicle. To assess the impact of the explosive charge on the occupant, we utilized the LSTC Hybrid III 50th dummy. We measured force and acceleration outputs from the dummy and compared them with the allowable limits defined in NATO AEP-55 STANAG 4569 VOL-2.