Study on Analytical Verification Method for Dynamic Load Profile-based Joint Design
Fastening is clamping and fixing objects using tensile force generated by applying torque to bolts or nuts. In this process, the applied torque doesn’t entirely convert to bolt’s axial force (clamping force); It is mostly lost due to friction, and only a portion is transmitted as axial force. Typically, around 90% of the torque is lost. These frictional losses are influenced by factors like the shape and material of the joint parts and surface finishing. As depicted in Fig.1, even small change in friction coefficient can have a significant impact on the resulting clamping force.
https://www.dynalook.com/conferences/14th-european-ls-dyna-conference-2023/point-connections/kim_hyundai.pdf/view
https://www.dynalook.com/@@site-logo/DYNAlook-Logo480x80.png
Study on Analytical Verification Method for Dynamic Load Profile-based Joint Design
Fastening is clamping and fixing objects using tensile force generated by applying torque to bolts or nuts. In this process, the applied torque doesn’t entirely convert to bolt’s axial force (clamping force); It is mostly lost due to friction, and only a portion is transmitted as axial force. Typically, around 90% of the torque is lost. These frictional losses are influenced by factors like the shape and material of the joint parts and surface finishing. As depicted in Fig.1, even small change in friction coefficient can have a significant impact on the resulting clamping force.